
1

A Fundamental Tradeoff between Computation and

Communication in Distributed Computing
Songze Li, Student Member, IEEE, Mohammad Ali Maddah-Ali, Member, IEEE,

Qian Yu, Student Member, IEEE, and A. Salman Avestimehr, Senior Member, IEEE

Abstract—How can we optimally trade extra computing power
to reduce the communication load in distributed computing? We
answer this question by characterizing a fundamental tradeoff
between computation and communication in distributed comput-
ing, i.e., the two are inversely proportional to each other.

More specifically, a general distributed computing framework,
motivated by commonly used structures like MapReduce, is
considered, where the overall computation is decomposed into
computing a set of “Map” and “Reduce” functions distribut-
edly across multiple computing nodes. A coded scheme, named
“Coded Distributed Computing” (CDC), is proposed to demon-
strate that increasing the computation load of the Map functions
by a factor of r (i.e., evaluating each function at r carefully
chosen nodes) can create novel coding opportunities that reduce
the communication load by the same factor.

An information-theoretic lower bound on the communica-
tion load is also provided, which matches the communication
load achieved by the CDC scheme. As a result, the optimal
computation-communication tradeoff in distributed computing
is exactly characterized.

Finally, the coding techniques of CDC is applied to the Hadoop
TeraSort benchmark to develop a novel CodedTeraSort

algorithm, which is empirically demonstrated to speed up the
overall job execution by 1.97× - 3.39×, for typical settings of
interest.

Index Terms—Distributed Computing, MapReduce,
Computation-Communication Tradeoff, Coded Multicasting,
Coded TeraSort

I. INTRODUCTION

We consider a general distributed computing framework,

motivated by prevalent structures like MapReduce [4] and

Spark [5], in which the overall computation is decomposed

into two stages: “Map” and “Reduce”. Firstly in the Map stage,

distributed computing nodes process parts of the input data

S. Li, Q. Yu and A.S. Avestimehr are with the Department of Electrical
Engineering, University of Southern California, Los Angeles, CA, 90089,
USA (e-mail: songzeli@usc.edu; qyu880@usc.edu; avestimehr@ee.usc.edu).

M. A. Maddah-Ali is with Department of Electrical Engineering,
Sharif University of Technology, Tehran, 11365, Iran (e-mail: mad-
dah_ali@sharif.edu).

A preliminary part of this work was presented in 53rd Annual Allerton
Conference on Communication, Control, and Computing, 2015 [1]. A part
of this work was presented in IEEE International Symposium on Information
Theory, 2016 [2]. A part of this work was presented in the 6th International
Workshop on Parallel and Distributed Computing for Large Scale Machine
Learning and Big Data Analytics, 2017 [3].

This work is in part supported by NSF grants CCF-1408639, NETS-
1419632, ONR award N000141612189, NSA Award No. H98230-16-C-0255,
and a research gift from Intel. This material is based upon work supported by
Defense Advanced Research Projects Agency (DARPA) under Contract No.
HR001117C0053. The views, opinions, and/or findings expressed are those of
the author(s) and should not be interpreted as representing the official views
or policies of the Department of Defense or the U.S. Government.

locally, generating some intermediate values according to their

designed Map functions. Next, they exchange the calculated

intermediate values among each other (a.k.a. data shuffling),

in order to calculate the final output results distributedly using

their designed Reduce functions.

Within this framework, data shuffling often appears to

limit the performance of distributed computing applications,

including self-join [6], tera-sort [7], and machine learning

algorithms [8]. For example, in a Facebook’s Hadoop cluster,

it is observed that 33% of the overall job execution time is

spent on data shuffling [8]. Also as is observed in [9], 70% of

the overall job execution time is spent on data shuffling when

running a self-join application on an Amazon EC2 cluster [10].

As such motivated, we ask this fundamental question that if

coding can help distributed computing in reducing the load

of communication and speeding up the overall computation?

Coding is known to be helpful in coping with the channel

uncertainty in telecommunication and also in reducing the

storage cost in distributed storage systems and cache networks.

In this work, we extend the application of coding to distributed

computing and propose a framework to substantially reduce the

load of data shuffling via coding and some extra computing

in the Map phase.

More specifically, we formulate and characterize a funda-

mental tradeoff relationship between “computation load” in

the Map phase and “communication load” in the data shuffling

phase, and demonstrate that the two are inversely proportional

to each other. We propose an optimal coded scheme, named

“Coded Distributed Computing” (CDC), which demonstrates

that increasing the computation load of the Map phase by a

factor of r (i.e., evaluating each Map function at r carefully

chosen nodes) can create novel coding opportunities in the

data shuffling phase that reduce the communication load by

the same factor.

To illustrate our main result, consider a distributed com-

puting framework to compute Q arbitrary output functions

from N input files, using K distributed computing nodes. As

mentioned earlier, the overall computation is performed by

computing a set of Map and Reduce functions distributedly

across the K nodes. In the Map phase, each input file is

processed locally, in one of the nodes, to generate Q inter-

mediate values, each corresponding to one of the Q output

functions. Thus, at the end of this phase, QN intermediate

values are calculated, which can be split into Q subsets of

N intermediate values and each subset is needed to calculate

one of the output functions. In the Shuffle phase, for every

output function to be calculated, all N intermediate values

ar
X

iv
:1

60
4.

07
08

6v
2

 [
cs

.I
T

]
 2

3
Se

p
20

17

2

corresponding to that function are transferred to one of the

nodes for reduction. Of course, depending on the node that

has been chosen to reduce an output function, a part of the

intermediate values are already available locally, and do not

need to be transferred in the Shuffle phase. This is because that

the Map phase has been carried out on the same set of nodes,

and the results of mapping done at a node can remain in that

node to be used for the Reduce phase. This offers some saving

in the load of communication. To reduce the communication

load even more, we may map each input file in more than one

nodes. Apparently, this increases the fraction of intermediate

values that are locally available. However, as we will show,

there is a better way to exploit this redundancy in computation

to reduce the communication load. The main message of this

paper is to show that following a particular patten in repeating

Map computations along with some coding techniques, we

can significantly reduce the load of communication. Perhaps

surprisingly, we show that the gain of coding in reducing

communication load scales with the size of the network.

To be more precise, we define the computation load r, 1 ≤
r ≤ K, as the total number of computed Map functions at the

nodes, normalized by N . For example, r = 1 means that none

of the Map functions has been re-computed, and r = 2 means

that on average each Map function can be computed on two

nodes. We also define communication load L, 0 ≤ L ≤ 1, as

the total amount of information exchanged across nodes in the

shuffling phase, normalized by the size of QN intermediate

values, in order to compute the Q output functions disjointly

and uniformly across the K nodes. Based on this formulation,

we now ask the following fundamental question:

• Given a computation load r in the Map phase, what is the

minimum communication load L∗(r), using any data shuf-

fling scheme, needed to compute the final output functions?

We propose Coded Distributed Computing (CDC) that

achieves a communication load of Lcoded(r) =
1
r · (1−

r
K) for

r = 1, . . . ,K, and the lower convex envelop of these points.

CDC employs a specific strategy to assign the computations of

the Map and Reduce functions across the computing nodes, in

order to enable novel coding opportunities for data shuffling.

In particular, for a computation load r ∈ {1, . . . ,K}, CDC

utilizes a carefully designed repetitive mapping of data blocks

at r distinct nodes to create coded multicast messages that

deliver data simultaneously to a subset of r ≥ 1 nodes. Hence,

compared with an uncoded data shuffling scheme, which as

we show later achieves a communication load Luncoded(r) =
1 − r

K , CDC is able to reduce the communication load by

exactly a factor of the computation load r. Furthermore, the

proposed CDC scheme applies to a more general distributed

computing framework where every output function is com-

puted by more than one, or particularly s ∈ {1, . . . ,K} nodes,

which provides better fault-tolerance in distributed computing.

We numerically compare the computation-communication

tradeoffs of CDC and uncoded data shuffling schemes (i.e.,

Lcoded(r) and Luncoded(r)) in Fig. 1. As it is illustrated, in

the uncoded scheme that achieves a communication load

Luncoded(r) = 1 − r
K , increasing the computation load r

offers only a modest reduction in communication load. In

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Computation Load (r)

C
o
m

m
u
n
ic

a
ti
o
n
 L

o
a
d
 (

L
)

Uncoded Scheme

Coded Distributed Computing

Fig. 1: Comparison of the communication load achieved by Coded
Distributed Computing Lcoded(r) with that of the uncoded scheme
Luncoded(r), for Q = 10 output functions, N = 2520 input files and
K = 10 computing nodes. For r ∈ {1, . . . ,K}, CDC is r times
better than the uncoded scheme.

fact for any r, this gain vanishes for large number of nodes

K. Consequently, it is not justified to trade computation

for communication using uncoded schemes. However, for

the coded scheme that achieves a communication load of

Lcoded(r) = 1
r · (1 − r

K), increasing the computation load

r will significantly reduce the communication load, and this

gain does not vanish for large K. For example as illustrated

in Fig. 1, when mapping each file at one extra node (r = 2),

CDC reduces the communication load by 55.6%, while the

uncoded scheme only reduces it by 11.1%.

We also prove an information-theoretic lower bound on

the minimum communication load L∗(r). To prove the lower

bound, we derive a lower bound on the total number of bits

communicated by any subset of nodes, using induction on the

size of the subset. To derive the lower bound for a particular

subset of nodes, we first establish a lower bound on the number

of bits needed by one of the nodes to recover the intermediate

values it needs to calculate its assigned output functions, and

then utilize the bound on the number of bits communicated

by the rest of the nodes in that subset, which is given by

the inductive argument. The derived lower bound on L∗(r)
matches the communication load achieved by the CDC scheme

for any computation load 1 ≤ r ≤ K. As a result, we exactly

characterize the optimal tradeoff between computation load

and communication load in the following:

L∗(r) = Lcoded(r) =
1

r
· (1−

r

K
), r ∈ {1, . . . ,K}.

For general 1 ≤ r ≤ K, L∗(r) is the lower convex envelop

of the above points {(r, Lcoded(r)) : r ∈ {1, . . . ,K}}. Note

that for large K, 1
r · (1 − r

K) ≈ 1
r , hence L∗(r) ≈ 1

r . This

result reveals a fundamental inversely proportional relation-

ship between computation load and communication load in

distributed computing. This also illustrates that the gain of 1
r

achieved by CDC is optimal and it cannot be improved by any

other scheme (since Lcoded(r) is an information-theoretic lower

bound on L∗(r) that applies to any data shuffling scheme).

3

Having theoretically characterized the optimal computation-

communication tradeoff achieved by the proposed CDC

scheme, we also empirically demonstrate the practical impact

of this tradeoff. In particular, we apply the coding tech-

niques of CDC to a widely used Hadoop sorting benchmark

TeraSort [11], developing a novel coded distributed sort-

ing algorithm CodedTeraSort [3]. We perform extensive

experiments on Amazon EC2 clusters, and observe that for

typical settings of interest, CodedTeraSort speeds up the

overall execution of the conventional TeraSort by a factor

of 1.97× - 3.39×.

Finally, we discuss some future directions to extend the

results of this work. In particular, we consider topics in-

cluding heterogeneous networks with asymmetric tasks, strag-

gling/failing computing nodes, multi-stage computation tasks,

multi-layer networks and structured topology, joint storage and

computation optimization, and coded edge/fog computing.

Related Works. The problem of characterizing the minimum

communication for distributed computing has been previously

considered in several settings in both computer science and

information theory communities. In [12], a basic computing

model is proposed, where two parities have x and y and aim

to compute a boolean function f(x, y) by exchanging the

minimum number of bits between them. Also, the problem

of minimizing the required communication for computing the

modulo-two sum of distributed binary sources with symmetric

joint distribution was introduced in [13]. Following these two

seminal works, a wide range of communication problems

in the scope of distributed computing have been studied

(see, e.g., [14]–[19]). The key differences distinguishing the

setting in this paper from most of the prior ones are 1) We

focus on the flow of communication in a general distributed

computing framework, motivated by MapReduce, rather than

the structures of the functions or the input distributions. 2)

We do not impose any constraint on the numbers of output

results, input data files and computing nodes (they can be

arbitrarily large), 3) We do not assume any special property

(e.g. linearity) of the computed functions.

The idea of efficiently creating and exploiting coded multi-

casting was initially proposed in the context of cache networks

in [20], [21], and extended in [22], [23], where caches pre-

fetch part of the content in a way to enable coding during

the content delivery, minimizing the network traffic. In this

paper, we propose a framework to study the tradeoff between

computation and communication in distributed computing.

We demonstrate that the coded multicasting opportunities

exploited in the above caching problems also exist in the data

shuffling of distributed computing frameworks, which can be

created by a strategy of repeating the computations of the

Map functions specified by the Coded Distributed Computing

(CDC) scheme.

Finally, in a recent work [24], the authors have proposed

methods for utilizing codes to speed up some specific dis-

tributed machine learning algorithms. The considered problem

in this paper differs from [24] in the following aspects. We

propose a general methodology for utilizing coding in data

shuffling that can be applied to any distributed computing

framework with a MapReduce structure, regardless of the un-

derlying application. In other words, any distributed computing

algorithm that fits in the MapReduce framework can benefit

from the proposed CDC solution. We also characterize the

information-theoretic computation-communication tradeoff in

such frameworks. Furthermore, the coding used in [24] is

at the application layer (i.e., applying computation on coded

data), while in this paper we focus on applying codes directly

on the shuffled data.

II. PROBLEM FORMULATION

In this section, we formulate a general distributed computing

framework motivated by MapReduce, and define the function

characterizing the tradeoff between computation and commu-

nication.

We consider the problem of computing Q arbitrary output

functions from N input files using a cluster of K dis-

tributed computing nodes (servers), for some positive integers

Q,N,K ∈ N, with N ≥ K. More specifically, given

N input files w1, . . . , wN ∈ F2F , for some F ∈ N, the

goal is to compute Q output functions φ1, . . . , φQ, where

φq : (F2F)
N → F2B , q ∈ {1, . . . , Q} maps all input files

to a length-B binary stream uq = φq(w1, . . . , wN) ∈ F2B , for

some B ∈ N.

Motivated by MapReduce, we assume that as illustrated

in Fig. 2 the computation of the output function φq , q ∈
{1, . . . , Q} can be decomposed as follows:

φq(w1, . . . , wN) = hq(gq,1(w1), . . . , gq,N (wN)), (1)

where

• The “Map” functions ~gn = (g1,n, . . . , gQ,n) : F2F →
(F2T)

Q, n ∈ {1, . . . , N} maps the input file wn into Q
length-T intermediate values vq,n = gq,n(wn) ∈ F2T ,

q ∈ {1, . . . , Q}, for some T ∈ N.1

• The “Reduce” functions hq : (F2T)
N → F2B , q ∈

{1, . . . , Q} maps the intermediate values of the output

function φq in all input files into the output value uq =
hq(vq,1, . . . , vq,N).

Remark 1. Note that for every set of output functions

φ1, . . . , φQ such a Map-Reduce decomposition exists (e.g.,

setting gq,n
′s to identity functions such that gq,n(wn) = wn

for all n = 1, . . . , N , and hq to φq in (1)). However, such a

decomposition is not unique, and in the distributed computing

literature, there has been quite some work on developing

appropriate decompositions of computations like join, sorting

and matrix multiplication (see, e.g., [4], [25]), for them to be

performed efficiently in a distributed manner. Here we do not

impose any constraint on how the Map and Reduce functions

are chosen (for example, they can be arbitrary linear or non-

linear functions). �

1When mapping a file, we compute Q intermediate values in parallel,
one for each of the Q output functions. The main reason to do this is that
parallel processing can be efficiently performed for applications that fit into
the MapReduce framework. In other words, mapping a file according to one
function is only marginally more expensive than mapping according to all
functions. For example, for the canonical Word Count job, while we are
scanning a document to count the number of appearances of one word, we
can simultaneously count the numbers of appearances of other words with
marginally increased computation cost.

4

Map Functions Reduce Functions

Fig. 2: Illustration of a two-stage distributed computing framework.
The overall computation is decomposed into computing a set of Map
and Reduce functions.

The above computation is carried out by K distributed

computing nodes, labelled as Node 1, . . . ,Node K. They

are interconnected through a multicast network. Following

the above decomposition, the computation proceeds in three

phases: Map, Shuffle and Reduce.

Map Phase: Node k, k ∈ {1, . . . ,K} computes the Map

functions of a set of files Mk, which are stored on Node k,

for some design parameter Mk ⊆ {w1, . . . , wN}. For each

file wn in Mk, Node k computes ~gn(wn)=(v1,n, . . . , vQ,n).
We assume that each file is mapped by at least one node, i.e.,

∪
k=1,...,K

Mk = {w1, . . . , wN}.

Definition 1 (Computation Load). We define the computation

load, denoted by r, 1 ≤ r ≤ K, as the total number of Map

functions computed across the K nodes, normalized by the

number of files N , i.e., r ,
∑K

k=1 |Mk|
N . The computation load

r can be interpreted as the average number of nodes that map

each file. ♦

Shuffle Phase: Node k, k ∈ {1, . . . ,K} is responsible for

computing a subset of output functions, whose indices are

denoted by a set Wk ⊆ {1, . . . , Q}. We focus on the case
Q
K ∈ N, and utilize a symmetric task assignment across the K
nodes to maintain load balance. More precisely, we require 1)

|W1| = · · · = |WK | = Q
K , 2) Wj ∩Wk = ∅ for all j 6= k.

Remark 2. Beyond the symmetric task assignment consid-

ered in this paper, characterizing the optimal computation-

communication tradeoff allowing general asymmetric task

assignments is a challenging open problem. As the first step

to study this problem, in our follow-up work [26] in which

the number of output functions Q is fixed and the computing

resources are abundant (e.g., number of computing nodes

K ≫ Q), we have shown that asymmetric task assignments

can do better than the symmetric ones, and achieve the

optimum run-time performance. �

To compute the output value uq for some q ∈ Wk, Node k
needs the intermediate values that are not computed locally in

the Map phase, i.e., {vq,n : q ∈ Wk, wn /∈ Mk}. After Node

k, k ∈ {1, . . . ,K} has finished mapping all the files in Mk,

the K nodes proceed to exchange the needed intermediate

values. In particular, each node k, k ∈ {1, . . . ,K}, creates an

input symbol Xk ∈ F2ℓk , for some ℓk ∈ N, as a function of the

intermediate values computed locally during the Map phase,

i.e., for some encoding function ψk : (F2T)
Q|Mk| → F2ℓk at

Node k, we have

Xk = ψk ({~gn : wn ∈ Mk}) . (2)

Having generated the message Xk, Node k multicasts it to all

other nodes.

By the end of the Shuffle phase, each of the K nodes

receives X1, . . . , XK free of error.

Definition 2 (Communication Load). We define the commu-

nication load, denoted by L, 0 ≤ L ≤ 1, as L , ℓ1+···+ℓK
QNT .

That is, L represents the (normalized) total number of bits

communicated by the K nodes during the Shuffle phase.2 ♦

Reduce Phase: Node k, k ∈ {1, . . . ,K}, uses the messages

X1, . . . , XK communicated in the Shuffle phase, and the local

results from the Map phase {~gn : wn ∈ Mk} to construct

inputs to the corresponding Reduce functions of Wk, i.e., for

each q ∈ Wk and some decoding function χq
k : F2ℓ1 × · · · ×

F2ℓK × (F2T)
Q|Mk| → (F2T)

N , Node k computes

(vq,1, . . . , vq,N) = χq
k (X1, . . . , XK , {~gn : wn ∈ Mk}) . (3)

Finally, Node k, k ∈ {1, . . . ,K}, computes the Reduce

function uq = hq(vq,1 . . . vq,N) for all q ∈ Wk.

We say that a computation-communication pair (r, L) ∈ R2

is feasible if for any δ > 0 and sufficiently large N , there

exist M1, . . . ,MK , W1, . . . ,WK , a set of encoding functions

{ψk}
K
k=1, and a set of decoding functions {χq

k : q ∈ Wk}
K
k=1

that achieve a computation-communication pair (r̃, L̃) ∈ Q2

such that |r−r̃| ≤ δ, |L−L̃| ≤ δ, and Node k can successfully

compute all the output functions whose indices are in Wk, for

all k ∈ {1, . . . ,K}.

Definition 3. We define the computation-communication func-

tion of the distributed computing framework

L∗(r) , inf{L : (r, L) is feasible}. (4)

L∗(r) characterizes the optimal tradeoff between computation

and communication in this framework. ♦

Example (Uncoded Scheme). In the Shuffle phase of a simple

“uncoded” scheme, each node receives the needed intermediate

values sent uncodedly by some other nodes. Since a total

of QN intermediate values are needed across the K nodes

and rN · Q
K = rQN

K of them are already available after the

Map phase, the communication load achieved by the uncoded

scheme

Luncoded(r) = 1− r/K. (5)

Remark 3. After the Map phase, each node knows the in-

termediate values of all Q output functions in the files it

has mapped. Therefore, for a fixed file assignment and any

symmetric assignment of the Reduce functions, specified by

2For notational convenience, we define all variables in binary extension
fields. However, one can consider arbitrary field sizes. For example, we can
consider all intermediate values vq,n, q = 1, . . . , Q, n = 1, . . . , N , to be
in the field FpT , for some prime number p and positive integer T , and the

symbol communicated by Node k (i.e., Xk), to be in the field F
sℓk

for some
prime number s and positive integer ℓk , for all k = 1, . . . ,K. In this case,

the communication load can be defined as L ,
(ℓ1+···+ℓK) log s

QNT log p
.

5

W1, . . . ,WK , we can satisfy the data requirements using the

same data shuffling scheme up to relabelling the Reduce func-

tions. In other words, the communication load is independent

of the assignment of the Reduce functions. �

In this paper, we also consider a generalization of the above

framework, which we call “cascaded distributed computing

framework”, where after the Map phase, each Reduce function

is computed by more than one, or particularly s nodes, for

some s ∈ {1, . . . ,K}. This generalized model is motivated

by the fact that many distributed computing jobs require

multiple rounds of Map and Reduce computations, where the

Reduce results of the previous round serve as the inputs to

the Map functions of the next round. Computing each Reduce

function at more than one node admits data redundancy for

the subsequent Map-function computations, which can help

to improve the fault-tolerance and reduce the communication

load of the next-round data shuffling. We focus on the case
Q

(Ks)
∈ N, and enforce a symmetric assignment of the Reduce

tasks to maintain load balance. Particularly, we require that

every subset of s nodes compute a disjoint subset of Q

(Ks)
Reduce functions.

The feasible computation-communication triple (r, s, L) ∈
R × N × R is defined similar as before. We define the

computation-communication function of the cascaded dis-

tributed computing framework

L∗(r, s) , inf{L : (r, s, L) is feasible}. (6)

III. MAIN RESULTS

Theorem 1. The computation-communication function of the

distributed computing framework, L∗(r) is given by

L∗(r) = Lcoded(r) ,
1
r · (1− r

K), r ∈ {1, . . . ,K}, (7)

for sufficiently large T . For general 1 ≤ r ≤ K, L∗(r) is the

lower convex envelop of the above points {(r, 1r · (1 − r
K)) :

r ∈ {1, . . . ,K}}.

We prove the achievability of Theorem 1 by proposing

a coded scheme, named Coded Distributed Computing, in

Section V. We demonstrate that no other scheme can achieve

a communication load smaller than the lower convex envelop

of the points {(r, 1r · (1− r
K)) : r ∈ {1, . . . ,K}} by proving

the converse in Section VI.

Remark 4. Theorem 1 exactly characterizes the optimal trade-

off between the computation load and the communication load

in the considered distributed computing framework. �

Remark 5. For r ∈ {1, . . . ,K}, the communication load

achieved in Theorem 1 is less than that of the uncoded

scheme in (5) by a multiplicative factor of r, which equals the

computation load and can grow unboundedly as the number of

nodes K increases if e.g. r = Θ(K). As illustrated in Fig. 1

in Section I, while the communication load of the uncoded

scheme decreases linearly as the computation load increases,

Lcoded(r) achieved in Theorem 1 is inversely proportional to

the computation load. �

Remark 6. While increasing the computation load r causes a

longer Map phase, the coded achievable scheme of Theorem 1

maximizes the reduction of the communication load using

the extra computations. Therefore, Theorem 1 provides an

analytical framework to optimally trading the computation

power in the Map phase for more bandwidth in the Shuffle

phase, which helps to minimize the overall execution time of

applications whose performances are limited by data shuffling.

�

Theorem 2. The computation-communication function of the

cascaded distributed computing framework, L∗(r, s), for r ∈
{1, . . . ,K}, is characterized by

L∗(r, s) = Lcoded(r, s) ,

min{r+s,K}
∑

ℓ=max{r+1,s}

ℓ
(
K
ℓ

)(
ℓ−2
r−1

)(
r

ℓ−s

)

r
(
K
r

)(
K
s

) , (8)

for some s ∈ {1, . . . ,K} and sufficiently large T . For general

1 ≤ r ≤ K, L∗(r, s) is the lower convex envelop of the above

points {(r, Lcoded(r, s)) : r ∈ {1, . . . ,K}}.

We present the Coded Distributed Computing scheme that

achieves the computation-communication function in Theo-

rem 2 in Section V, and the converse of Theorem 2 in

Section VII.

Remark 7. A preliminary part of this result, in particular the

achievability for the special case of s= 1, or the achievable

scheme of Theorem 1 was presented in [1]. We note that when

s = 1, Theorem 2 provides the same result as in Theorem 1,

i.e., L∗(r, 1) = 1
r · (1− r

K), for r ∈ {1, . . . ,K}. �

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Computation Load (r)

C
o
m

m
u
n
ic

a
ti
o
n
 L

o
a
d
 (

L
)

s=1

s=2

s=3

Fig. 3: Minimum communication load L∗(r, s) = Lcoded(r, s) in
Theorem 2, for Q = 360 output functions, N = 2520 input files
and K=10 computing nodes.

Remark 8. For any fixed s ∈ {1, . . . ,K} (number of nodes

that compute each Reduce function), as illustrated in Fig. 3, the

communication load achieved in Theorem 2 outperforms the

linear relationship between computation and communication,

i.e., it is superlinear with respect to the computation load r.

�

Before we proceed to describe the general achievability

scheme for the cascaded distributed computing framework

(also the distributed computing framework as a special case of

s = 1), we first illustrate the key ideas of the proposed Coded

6

Distributed Computing scheme by presenting two examples in

the next section, for the cases of s = 1 and s > 1 respectively.

IV. ILLUSTRATIVE EXAMPLES: CODED DISTRIBUTED

COMPUTING

In this section, we present two illustrative examples of

the proposed achievable scheme for Theorem 1 and Theorem

2, which we call Coded Distributed Computing (CDC), for

the cases of s = 1 (Theorem 1) and s > 1 (Theorem 2)

respectively.

Example 1 (CDC for s = 1). We consider a MapReduce-

type problem in Fig. 4 for distributed computing of Q = 3
output functions, represented by red/circle, green/square, and

blue/triangle respectively, from N = 6 input files, using

K = 3 computing nodes. Nodes 1, 2, and 3 are respectively

responsible for final reduction of red/circle, green/square, and

blue/triangle output functions. Let us first consider the case

where no redundancy is imposed on the computations, i.e.,

each file is mapped once and computation load r = 1. As

shown in Fig. 4(a), Node k maps File 2k − 1 and File

2k for k = 1, 2, 3. In this case, each node maps 2 input

files locally, computing all three intermediate values needed

for the three output functions from each mapped file. In

Fig. 4, we represent, for example, the intermediate value of

the red/circle function in File n using a red circle labelled by

n, for all n = 1, . . . , 6. Similar representations follow for the

green/square and the blue/triangle functions. After the Map

phase, each node obtains 2 out of 6 required intermediate

values to reduce the output function it is responsible for (e.g.,

Node 1 knows the red circles in File 1 and File 2). Hence,

each node needs 4 intermediate values from the other nodes,

yielding a communication load of 4×3
3×6 = 2

3 .

Now, we demonstrate how the proposed CDC scheme trades

the computation load to slash the communication load via

in-network coding. As shown in Fig. 4(b), we double the

computation load such that each file is now mapped on

two nodes (r = 2). It is apparent that since more local

computations are performed, each node now only requires 2
other intermediate values, and an uncoded shuffling scheme

would achieve a communication load of 2×3
3×6 = 1

3 . However,

we can do much better with coding. As shown in Fig. 4(b),

instead of unicasting individual intermediate values, every

node multicasts a bit-wise XOR, denoted by ⊕, of 2 locally

computed intermediate values to the other two nodes, simulta-

neously satisfying their data demands. For example, knowing

the blue/triangle in File 3, Node 2 can cancel it from the coded

packet sent by Node 1, recovering the needed green/square in

File 1. Therefore, this coding incurs a communication load of
3

3×6 = 1
6 , achieving a 2× gain from the uncoded shuffling.

�

From the above example, we see that for the case of s = 1,

i.e., each of the Q output functions is computed on one node

and the computations of the Reduce functions are symmet-

rically distributed across nodes, the proposed CDC scheme

only requires performing bit-wise XOR as the encoding and

decoding operations. However, for the case of s > 1, as we

1 2

1 2

3 4 5 6

Node 1

3 4

1 2 5 6

5 6

1 2 3 4

1

2

1 2

3 4

3

4

5
6

5

6

5 6

3 4

Node 2

Node 3

Map

Map Map

Has Has

Has

Needs Needs

Needs

1 2

Files

1 2

Files

3 4

3 4

5 6

5 6

Files

(a) Uncoded Distributed Computing Scheme.

1 2

1 2

5 6

3 4

3 4

1 2

5 6

5 6

3 4

3 4

3 4

5 6

5 6

1 2

1 2

1 3 4 5

6 2

Node 3

Node 1 Node 2

Map

Map Map

Has

Needs

Has

Needs

Has

Needs

Files

2 61

Files

1 3 42 4 5 63

Files

5

(b) Coded Distributed Computing Scheme.

Fig. 4: Illustrations of the conventional uncoded distributed comput-
ing scheme with computation load r = 1, and the proposed Coded
Distributed Computing scheme with computation load r = 2, for
computing Q = 3 functions from N = 6 inputs on K = 3 nodes.

will show in the following example, the proposed CDC scheme

requires computing linear combinations of the intermediate

values during the encoding process.

Example 2 (CDC for s > 1). In this example, we consider

a job of computing Q = 6 output functions from N = 6
input files, using K = 4 nodes. We focus on the case where

the computation load r = 2, and each Reduce function is

computed by s = 2 nodes. In the Map phase, each file is

mapped by r = 2 nodes. As shown in Fig. 5, the sets of the

files mapped by the 4 nodes are M1 = {w1, w2, w3}, M2 =
{w1, w4, w5}, M3 = {w2, w4, w6}, and M4 = {w3, w5, w6}.

After the Map phase, Node k, k ∈ {1, 2, 3, 4}, knows the

intermediate values of all Q = 6 output functions in the

files in Mk, i.e., {vq,n : q ∈ {1, . . . , 6}, wn ∈ Mk}. In

the Reduce phase, we assign the computations of the Reduce

functions in a symmetric manner such that every subset of

s = 2 nodes compute a common Reduce function. More

specifically as shown in Fig. 5, the sets of indices of the

Reduce functions computed by the 4 nodes are W1={1, 2, 3},

7

W2 = {1, 4, 5}, W3 = {2, 4, 6}, and W4 = {3, 5, 6}. There-

fore, for example, Node 1 still needs the intermediate values

{vq,n : q ∈ {1, 2, 3}, n ∈ {4, 5, 6}} through data shuffling to

compute its assigned Reduce functions h1, h2, h3.

Node 1

Node 3

Node 4

Node 2

Node 1

Node 2

Node 3

Node 4

Multicast

Multicast

Multicast

Multicast

Fig. 5: Illustration of the CDC scheme to compute Q = 6 output
functions from N = 6 input files distributedly at K = 4 computing
nodes. Each file is mapped by r = 2 nodes and each output function
is computed by s = 2 nodes. After the Map phase, every node knows
6 intermediate values, one for each output function, in every file it
has mapped. The Shuffle phase proceeds in two rounds. In the first
round, each node multicasts bit-wise XOR of intermediate values
to subsets of two nodes. In the second round, each node splits an

intermediate value vq,n evenly into two segments vq,n = (v
(1)
q,n, v

(2)
q,n),

and multicasts two linear combinations of the segments that are
cosntructed using coefficients α1, α2, and α3 to the other three nodes.

The data shuffling process consists of two rounds of com-

munication over the multicast network. In the first round,

intermediate values are communicated within each subset

of 3 nodes. In the second round, intermediate values are

communicated within the set of all 4 nodes. In what follows,

we describe these two rounds of communication respectively.

Round 1: Subsets of 3 nodes. We first consider the subset

{1, 2, 3}. During the data shuffling, each node whose index is

in {1, 2, 3} multicasts a bit-wise XOR of two locally computed

intermediate values to the other two nodes:

• Node 1 multicasts v1,2 ⊕ v2,1 to Node 2 and Node 3,

• Node 2 multicasts v4,1 ⊕ v1,4 to Node 1 and Node 3,

• Node 3 mulicasts v4,2 ⊕ v2,4 to Node 1 and Node 2,

Since Node 2 knows v2,1 and Node 3 knows v1,2 locally,

they can respectively decode v1,2 and v2,1 from the coded

message v1,2 ⊕ v2,1.

We employ the similar coded shuffling scheme on the other

3 subsets of 3 nodes. After the first round of shuffling,

• Node 1 recovers (v1,4, v1,5), (v2,4, v2,6) and (v3,5, v3,6),
• Node 2 recovers (v1,2, v1,3), (v4,2, v4,6) and (v5,3, v5,6),
• Node 3 recovers (v2,1, v2,3), (v4,1, v4,5) and (v6,3, v6,5),
• Node 4 recovers (v3,1, v3,2), (v5,1, v5,4) and (v6,2, v6,4).

Round 2: All 4 nodes. We first split each of the intermediate

values v6,1, v5,2, v4,3, v3,4, v2,5, and v1,6 into two equal-

sized segments each containing T/2 bits, which are denoted

by v
(1)
q,n and v

(2)
q,n for an intermediate value vq,n. Then, for

some coefficients α1, α2, α3 ∈ F
2

T
2

, Node 1 multicasts the

following two linear combinations of three locally computed

segments to the other three nodes.

v
(1)
4,3 + v

(1)
5,2 + v

(1)
6,1, (9)

α1v
(1)
4,3 + α2v

(1)
5,2 + α3v

(1)
6,1. (10)

Similarly, as shown in Fig. 5, each of Node 2, Node 3, and

Node 4 multicasts two linear combinations of three locally

computed segments to the other three nodes, using the same

coefficients α1, α2, and α3.

Having received the above two linear combinations, each of

Node 2, Node 3, and Node 4 first subtracts out one segment

available locally from the combinations, or more specifically,

v
(1)
6,1 for Node 2, v

(1)
5,2 for Node 3, and v

(1)
4,3 for Node 4. After

the subtraction, each of these three nodes recovers the required

segments from the two linear combinations. More specifically,

Node 2 recovers v
(1)
4,3 and v

(1)
5,2 , Node 3 recovers v

(1)
4,3 and v

(1)
6,1 ,

and Node 4 recovers v
(1)
5,2 and v

(1)
6,1 . It is not difficult to see that

the above decoding process is guaranteed to be successful if

α1, α2, and α3 are all distinct from each other, which requires

the field size 2
T
2 ≥ 3 (e.g., T = 4). Following the similar

procedure, each node recovers the required segments from the

linear combinations multicast by the other three nodes. More

specifically, after the second round of data shuffling,

• Node 1 recovers v1,6, v2,5 and v3,4,

• Node 2 recovers v1,6, v4,3 and v5,2,

• Node 3 recovers v2,5, v4,3 and v6,1,

• Node 4 recovers v3,4, v5,2 and v6,1.

We finally note that in the second round of data shuffling,

each linear combination multicast by a node is simultaneously

useful for the rest of the three nodes. �

V. GENERAL ACHIEVABLE SCHEME: CODED

DISTRIBUTED COMPUTING

In this section, we formally prove the upper bounds in

Theorem 1 and 2 by presenting and analyzing the Coded

Distributed Computing (CDC) scheme. We focus on the more

general case considered in Theorem 2 with s ≥ 1, and the

scheme for Theorem 1 simply follows by setting s = 1.

We first consider the integer-valued computation load r ∈
{1, . . . ,K}, and then generalize the CDC scheme for any

1 ≤ r ≤ K. When r = K, every node can map all

the input files and compute all the output functions locally,

thus no communication is needed and L∗(K, s) = 0 for all

s ∈ {1, . . . ,K}. In what follows, we focus on the case where

r < K.

8

We consider sufficiently large number of input files N , and
(
K
r

)
(η1 − 1) < N ≤

(
K
r

)
η1, for some η1 ∈ N. We first inject

(
K
r

)
η1 − N empty files into the system to obtain a total of

N̄ =
(
K
r

)
η1 files, which is now a multiple of of

(
K
r

)
. We note

that lim
N→∞

N̄
N = 1. Next, we proceed to present the achievable

scheme for a system with N̄ input files w1, . . . , wN̄ .

A. Map Phase Design

In the Map phase the N̄ input files are evenly partitioned

into
(
K
r

)
disjoint batches of size η1, each corresponding to a

subset T ⊂ {1, . . . ,K} of size r, i.e.,

{w1, . . . , wN̄} = ∪
T ⊂{1,...,K},|T |=r

BT , (11)

where BT denotes the batch of η1 files corresponding to the

subset T .

Given this partition, Node k, k ∈ {1, . . . ,K}, computes the

Map functions of the files in BT if k ∈ T . Or equivalently,

BT ⊆ Mk if k ∈ T . Since each node is in
(
K−1
r−1

)
subsets of

size r, each node computes
(
K−1
r−1

)
η1 = rN̄

K Map functions,

i.e., |Mk| =
rN̄
K for all k ∈ {1, . . . ,K}. After the Map phase,

Node k, k ∈ {1, . . . ,K}, knows the intermediate values of

all Q output functions in the files in Mk, i.e., {vq,n : q ∈
{1, . . . , Q}, wn ∈ Mk}.

B. Coded Data Shuffling

We recall that we focus on the case where the number of the

output functions Q satisfies Q

(Ks)
∈ N, and enforce a symmetric

assignment of the Reduce functions such that every subset of

s nodes reduce Q

(Ks)
functions. Specifically, Q =

(
K
s

)
η2 for

some η2 ∈ N, and the computations of the Reduce functions

are assigned symmetrically across the K nodes as follows.

Firstly the Q Reduce functions are evenly partitioned into
(
K
s

)

disjoint batches of size η2, each corresponding to a unique

subset P of s nodes, i.e.,

{1, . . . , Q} = ∪
P⊆{1,...,K},|P|=s

DP , (12)

where DP denotes the indices of the batch of η2 Reduce

functions corresponding to the subset P .

Given this partition, Node k, k ∈ {1, . . . ,K}, computes

the Reduce functions whose indices are in DP if k ∈ P . Or

equivalently, DP ⊆ Wk if k ∈ P . As a result, each node

computes
(
K−1
s−1

)
η2 = sQ

K Reduce functions, i.e., |Wk| =
sQ
K

for all k ∈ {1, . . . ,K}.

For a subset S of {1, . . . ,K} and S1 ⊂ S with |S1| = r,

we denote the set of intermediate values needed by all nodes

in S\S1, no node outside S , and known exclusively by nodes

in S1 as V
S\S1

S1
. More formally:

V
S\S1

S1
, {vq,n :q ∈ ∩

k∈S\S1

Wk, q /∈ ∪
k/∈S

Wk,

wn ∈ ∩
k∈S1

Mk, wn /∈ ∪
k/∈S1

Mk}. (13)

We observe that the set V
S\S1

S1
defined above contains

intermediate values of
(

r
|S|−s

)
η2 output functions. This is

because that the output functions whose intermediate values

are included in V
S\S1

S1
should be computed exclusively by the

nodes in S\S1 and a subset of s − (|S| − r) nodes in S1.

Therefore, V
S\S1

S1
contains the intermediate values of a total

of
(

r
s−(|S|−r)

)
η2 =

(
r

|S|−s

)
η2 output functions. Since every

subset of r nodes map a unique batch of η1 files, V
S\S1

S1

contains |V
S\S1

S1
| =

(
r

|S|−s

)
η1η2 intermediate values.

Next, we first concatenate all intermediate values in V
S\S1

S1

to construct a symbol U
S\S1

S1
∈ F

2(
r

|S|−s)η1η2T
. Then for

S1 = {σ1, . . . , σr}, we arbitrarily and evenly split U
S\S1

S1
into

r segments, each containing
(

r
|S|−s

)
η1η2T

r bits, i.e.,

U
S\S1

S1
=
(

U
S\S1

S1,σ1
, U

S\S1

S1,σ2
, . . . , U

S\S1

S1,σr

)

, (14)

where U
S\S1

S1,σi
∈ F

2(
r

|S|−s)
η1η2T

r
denotes the segment associated

with Node σi ∈ S1.

For each k ∈ S , there are a total of
(
|S|−1
r−1

)
subsets of

S with size r that contain the element k. We index these

subsets as S(k)[1],S(k)[2] . . . ,S(k)[
(
|S|−1
r−1

)
]. Within a subset

S(k)[i], the segment associated with Node k is U
S\S(k)[i]

S(k)[i],k
, for

all i = 1, . . . ,
(
|S|−1
r−1

)
. We note that each segment U

S\S(k)[i]

S(k)[i],k
,

i = 1, . . . ,
(
|S|−1
r−1

)
, is known by all nodes whose indices

are in S(k)[i], and needed by all nodes whose indices are in

S\S(k)[i].

1) Encoding: The shuffling scheme of CDC consists of

multiple rounds, each corresponding to all subsets of the K
nodes with a particular size. Within each subset, each node

multicasts linear combinations of the segments that are associ-

ated with it to the other nodes in the subset. More specifically,

for each subset S ⊆ {1, . . . ,K} of size max{r+1, s} ≤ |S| ≤
min{r + s,K}, we define n1 ,

(
|S|−1
r−1

)
and n2 ,

(
|S|−2
r−1

)
.

Then for each k ∈ S , Node k computes n2 message symbols,

denoted by XS
k [1], X

S
k [2], . . . , X

S
k [n2] as follows. For some

coefficients α1, . . . , αn1
where αi ∈ F

2(
r

|S|−s)
η1η2T

r
for all

i = 1, . . . , n1, Node k computes

XS
k [1]=U

S\S(k)[1]

S(k)[1],k
+ U

S\S(k)[2]

S(k)[2],k
+ · · ·+ U

S\S(k)[n1]

S(k)[n1],k
,

XS
k [2]=α1U

S\S(k)[1]

S(k)[1],k
+α2U

S\S(k)[2]

S(k)[2],k
+ · · ·+αn1

U
S\S(k)[n1]

S(k)[n1],k
,

...

XS
k [n2]=α

n2−1
1 U

S\S(k)[1]

S(k)[1],k
+ αn2−1

2 U
S\S(k)[2]

S(k)[2],k

+ · · ·+ αn2−1
n1

U
S\S(k)[n1]

S(k)[n1],k
,

(15)

or equivalently,








XS
k [1]

XS
k [2]
...

XS
k [n2]







=








1 1 · · · 1
α1 α2 · · · αn1

...
...

. . .
...

αn2−1
1 αn2−1

2 · · · αn2−1
n1








︸ ︷︷ ︸

AS










U
S\S(k)[1]

S(k)[1],k

U
S\S(k)[2]

S(k)[2],k

...

U
S\S(k)[n1]

S(k)[n1],k










.

(16)

9

We note that the above encoding process is the same at all

nodes whose indices are in S , i.e., each of them multiplies the

same matrix A
S in (16) with the segments associated with it.

Having generated the above message symbols, Node k
multicasts them to the other nodes whose indices are in S .

Remark 9. When s = 1, i.e., every output function is

computed by one node, the above shuffling scheme only takes

one round for all subsets S of size |S| = r + 1. Instead of

multicasting linear combinations, every node in S can simply

multicast the bit-wise XOR of its associated segments to the

other r nodes in S . �

2) Decoding: For j ∈ S and j 6= k, there are a

total of
(
|S|−2
r−2

)
subsets of S that have size r and si-

multaneously contain j and k. Hence, among all n1 seg-

ments U
S\S(k)[1]

S(k)[1],k
, U

S\S(k)[2]

S(k)[2],k
, . . . , U

S\S(k)[n1]

S(k)[n1],k
associated with

Node k,
(
|S|−2
r−2

)
of them are already known at Node j, and

the rest of n1 −
(
|S|−2
r−2

)
=
(
|S|−1
r−1

)
−
(
|S|−2
r−2

)
=
(
|S|−2
r−1

)
= n2

segments are needed by Node j. We denote the indices of the

subsets that contain the element k but not the element j as

b1jk, b
2
jk, . . . , b

n2

jk , such that 1 ≤ b1jk < b2jk < · · · < bn2

jk ≤ n1,

and j /∈ S(k)[b
i
jk] for all i = 1, 2, . . . , n2.

After receiving the symbols XS
k [1], X

S
k [2], . . . , X

S
k [n2]

from Node k, Node j first removes the locally known seg-

ments from the linear combinations to generate n2 symbols

Y S
jk[1], Y

S
jk[2], . . . , Y

S
jk[n2], such that








Y S
jk[1]

Y S
jk[2]

...

Y S
jk[n2]







=









1 1 · · · 1
αb1

jk
αb2

jk
· · · αb

n2
jk

...
...

. . .
...

αn2−1
b1
jk

αn2−1
b2
jk

· · · αn2−1
b
n2
jk









︸ ︷︷ ︸

BS
jk












U
S\S(k)[b

1
jk]

S(k)[b
1
jk

],k

U
S\S(k)[b

2
jk]

S(k)[b
2
jk

],k

...

U
S\S(k)[b

n2
jk

]

S(k)[b
n2
jk

],k












,

(17)

where B
S
jk ∈ Fn2×n2

2(
r

|S|−s)
η1η2T

r

is a square sub-matrix of AS in

(16) that contains the columns with indices b1jk, b
2
jk, . . . , b

n2

jk

of AS
k .

Node j can decode the desired segments from Node k if the

matrix B
S
jk is invertible. We note that BS

jk is a Vandermonde

matrix, and it is invertible if αb1
jk
, αb2

jk
, . . . , αb

n2
jk

are all

distinct. This holds for all j ∈ S\{k} if there exist n1 distinct

coefficients in F
2(

r
|S|−s)

η1η2T

r
, which requires 2(

r
|S|−s)

η1η2T

r ≥

n1 =
(
|S|−1
r−1

)
, or equivalently T ≥

r log (|S|−1
r−1)

(r
|S|−s)η1η2

. Finally, the

proposed coded shuffling scheme can successfully deliver all

the required intermediate values within all subsets S with

max{r + 1, s} ≤ |S| ≤ min{r + s,K}, if T is sufficiently

large, i.e.,

T ≥ max
max{r+1,s}≤|S|≤min{r+s,K}

r log
(
|S|−1
r−1

)

(
r

|S|−s

)
η1η2

. (18)

C. Correctness of CDC

We demonstrate the correctness of the above shuffling

scheme by showing that after the Shuffle phase, each node

can decode all of the required intermediate values to compute

its assigned Reduce functions. We use Node 1 as an example,

and similar arguments apply to all other nodes. WLOG we

assume that the Reduce function h1 is to be computed by

Node 1. Node 1 will need a total of
(
K−1
r

)
η1 distinct in-

termediate values of h1 from other nodes (it already knows
rN̄
K = N̄ −

(
K−1
r

)
η1 intermediate values of h1 by mapping

the files in M1). By the assignment of the Reduce functions,

there exits a subset S2 of size s containing Node 1 such that

all nodes in S2 need to compute h1. Then, during the data

shuffling process within each subset S containing S2 (note that

by the definition of V
S\S1

S1
in (13), the intermediate values of

h1 will not be communicated to Node 1 if S2 * S , and this

is because that some node outside S also wants to compute

h1), there are
(

s−1
|S|−r−1

)
subsets S1 of S with size |S1| = r

such that 1 /∈ S1 and S\S1 ⊆ S2, and thus Node 1 decodes
(

s−1
|S|−r−1

)
η1 distinct intermediate values of h1. Therefore, the

total number of distinct intermediate values of h1 Node 1

decodes over the entire Shuffle phase is

min{r+s,K}
∑

ℓ=max{r+1,s}

(
s− 1

ℓ− r − 1

)(
K − s

ℓ− s

)

η1=

(
K − 1

r

)

η1, (19)

which matches the required number of intermediate values for

h1. This is also true for all the other Reduce functions assigned

to Node 1.

D. Communication Load

In the above shuffling scheme, for each subset S ⊆
{1, . . . ,K} of size max{r + 1, s} ≤ |S| ≤ min{r + s,K},

each Node k ∈ S communicates n2 =
(
|S|−2
r−1

)
message

symbols. Each of these symbols contains
(

r
|S|−s

)
η1η2T

r bits.

Hence, all nodes whose indices are in S communicate a total of

|S|
(
|S|−2
r−1

)(
r

|S|−s

)
η1η2T

r bits. The overall communication load

achieved by the proposed CDC scheme is

Lcoded(r, s) = lim
N→∞

min{r+s,K}
∑

ℓ=max{r+1,s}

(
K
ℓ

)
ℓ
r

(
ℓ−2
r−1

)(
r

ℓ−s

)
η1η2T

QNT

= lim
N→∞

min{r+s,K}
∑

ℓ=max{r+1,s}

ℓ
(
K
ℓ

)(
ℓ−2
r−1

)(
r

ℓ−s

)
N̄

r
(
K
r

)(
K
s

)
N

=

min{r+s,K}
∑

ℓ=max{r+1,s}

ℓ
(
K
ℓ

)(
ℓ−2
r−1

)(
r

ℓ−s

)

r
(
K
r

)(
K
s

) . (20)

E. Non-Integer Valued Computation Load

For non-integer valued computation load r ≥ 1, we gen-

eralize the CDC scheme as follows. We first expand the

computation load r = αr1+(1−α)r2 as a convex combination

of r1 , ⌊r⌋ and r2 , ⌈r⌉, for some 0 ≤ α ≤ 1. Then

we partition the set of N̄ input files {w1, . . . , wN̄} into

two disjoint subsets I1 and I2 of sizes |I1| = αN̄ and

|I2| = (1 − α)N̄ . We next apply the CDC scheme described

above respectively to the files in I1 with a computation load

r1 and the files in I2 with a computation load r2, to compute

10

each of the Q output functions at the same set of s nodes.

This results in a communication load of

lim
N→∞

QαN̄Lcoded(r1, s)T +Q(1− α)N̄Lcoded(r2, s)T

QNT

=αLcoded(r1, s) + (1− α)Lcoded(r2, s), (21)

where Lcoded(r, s) is the communication load achieved by

CDC in (20) for integer-valued r, s ∈ {1, . . . ,K}.

Using this generalized CDC scheme, for any two integer-

valued computation loads r1 and r2, the points on the line

segment connecting (r1, Lcoded(r1, s)) and (r2, Lcoded(r2, s))
are achievable. Therefore, for general 1 ≤ r ≤ K, the lower

convex envelop of the achievable points {(r, Lcoded(r, s)) : r ∈
{1, . . . ,K}} is achievable. This proves the upper bound on

the computation-communication function in Theorem 2 (also

the achievability part of Theorem 1 by setting s = 1).

Remark 10. The ideas of efficiently creating and exploiting

coded multicasting opportunities have been introduced in

caching problems [20]–[22]. In this section, we illustrated how

coding opportunities can be utilized in distributed computing

to slash the load of communicating intermediate values, by

designing a particular assignment of extra computations across

distributed computing nodes. We note that the calculated

intermediate values in the Map phase mimics the locally

stored cache contents in caching problems, providing the “side

information” to enable coding in the following Shuffle phase

(or content delivery).

For the case of s = 1 where no two nodes are interested

in computing a common Reduce function, the coded data

shuffling of CDC is similar to a coded transmission strategy

in wireless D2D networks proposed in [22], where the side

information enabling coded multicasting are pre-fetched in

a specific repetitive manner in the caches of wireless nodes

(in CDC such information is obtained by computing the Map

functions locally). When s is larger than 1, i.e., every Reduce

function needs to be computed at multiple nodes, our CDC

scheme creates novel coding opportunities that exploit both

the redundancy of the Map computations and the commonality

of the data requests for Reduce functions across nodes, further

reducing the communication load. �

Remark 11. Generally speaking, we can view the Shuffle

phase of the considered distributed computing framework as

an instance of the index coding problem [27], [28], in which

a central server aims to design a broadcast message (code)

with minimum length to simultaneously satisfy the requests

of all the clients, given the clients’ side information stored

in their local caches. Note that while a randomized linear

network coding approach (see e.g., [29]–[31]) is sufficient

to implement any multicast communication where messages

are intended by all receivers, it is generally sub-optimal for

index coding problems where every client requests different

messages. Although the index coding problem is still open

in general, for the considered distributed computing scenario

where we are given the flexibility of designing Map com-

putation (thus the flexibility of designing side information),

we prove in the next two sections tight lower bounds on the

minimum communication loads for the cases s = 1 and s > 1

respectively, demonstrating the optimality of the proposed

CDC scheme. �

VI. CONVERSE OF THEOREM 1

In this section, we prove the lower bound on L∗(r) in

Theorem 1.

For k ∈ {1, . . . ,K}, we denote the set of indices of the

files mapped by Node k as Mk, and the set of indices of

the Reduce functions computed by Node k as Wk. As the

first step, we consider the communication load for a given

file assignment M , (M1,M2 . . . ,MK) in the Map phase.

We denote the minimum communication load under the file

assignment M by L∗
M.

We denote the number of files that are mapped at j nodes

under a file assignment M, as ajM, for all j ∈ {1, . . . ,K}:

ajM =
∑

J⊆{1,...,K}:|J |=j

|(∩
k∈J

Mk)\(∪
i/∈J

Mi)|. (22)

Node 1 Node 2 Node 3

Files

1 3

5 6

4 5

6

2 3

4 6

Files Files

Fig. 6: A file assignment for N = 6 files and K = 3 nodes.

For example, for the particular file assignment in Fig. 6,

i.e., M = ({1, 3, 5, 6}, {4, 5, 6}, {2, 3, 4, 6}), a1M = 2 since

File 1 and File 2 are mapped on a single node (i.e., Node 1

and Node 3 respectively). Similarly, we have a2M = 3 (Files

3, 4, and 5), and a3M = 1 (File 6).

For a particular file assignment M, we present a lower

bound on L∗
M in the following lemma.

Lemma 1. L∗
M ≥

K∑

j=1

aj
M

N · K−j
Kj .

Next, we first demonstrate the converse of Theorem 1 using

Lemma 1, and then give the proof of Lemma 1.

Converse Proof of Theorem 1. It is clear that the minimum

communication load L∗(r) is lower bounded by the minimum

value of L∗
M over all possible file assignments which admit a

computation load of r:

L∗(r) ≥ inf
M:|M1|+···+|MK |=rN

L∗
M. (23)

Then by Lemma 1, we have

L∗(r) ≥ inf
M:|M1|+···+|MK |=rN

K∑

j=1

ajM
N

·
K − j

Kj
. (24)

For every file assignment M such that |M1|+· · ·+|MK | =
rN , {ajM}Kj=1 satisfy

ajM ≥ 0, j ∈ {1, ...,K}, (25)

K∑

j=1

ajM = N, (26)

K∑

j=1

jajM = rN. (27)

11

Then since the function K−j
Kj in (24) is convex in j, and by

(26)
K∑

j=1

aj
M

N = 1, (24) becomes

L∗(r) ≥ inf
M:|M1|+···+|MK |=rN

K −
K∑

j=1

j
aj
M

N

K
K∑

j=1

j
aj
M

N

(a)
=

K − r

Kr
,

(28)

where (a) is due to the requirement imposed by the computa-

tion load in (27).

The lower bound on L∗(r) in (28) holds for general 1 ≤
r ≤ K. We can further improve the lower bound for non-

integer valued r as follows. For a particular r /∈ N, we first

find the line p+qj as a function of 1 ≤ j ≤ K connecting the

two points (⌊r⌋, K−⌊r⌋
K⌊r⌋) and (⌈r⌉, K−⌈r⌉

K⌈r⌉). More specifically,

we find p, q ∈ R such that

p+ qj|j=⌊r⌋ =
K − ⌊r⌋

K⌊r⌋
, (29)

p+ qj|j=⌈r⌉ =
K − ⌈r⌉

K⌈r⌉
. (30)

Then by the convexity of the function K−j
Kj in j, we have

for integer-valued j = 1, . . . ,K,

K − j

Kj
≥ p+ qj, j = 1, . . . ,K. (31)

Then (24) reduces to

L∗(r) ≥ inf
M:|M1|+···+|MK |=rN

K∑

j=1

ajM
N

· (p+ qj) (32)

= inf
M:|M1|+···+|MK |=rN

K∑

j=1

ajM
N

· p+
K∑

j=1

jajM
N

· q

(33)

(b)
= p+ qr, (34)

where (b) is due to the constraints on {ajM}Kj=1 in (26) and

(27).

Therefore, L∗(r) is lower bounded by the lower convex

envelop of the points {(r, K−r
Kr) : r ∈ {1, ...,K}}. This

completes the proof of the converse part of Theorem 1. �

Remark 12. Although the model proposed in this paper only

allows each node sending messages independently, we can

show that even if the data shuffling process can be carried

out in multiple rounds and dependency between messages are

allowed, the lower bound on L∗(r) remains the same. �

We devote the rest of this section to the proof of Lemma 1.

To prove Lemma 1, we develop a lower bound on the number

of bits communicated by any subset of nodes, by induction on

the size of the subset. In particular, for a subset of computing

nodes, we first characterize a lower bound on the minimum

number of bits required by a particular node in the subset,

which is given by a cut-set bound separating this node and all

the other nodes in the subset. Then, we combine this bound

with the lower bound on the number of bits communicated

by the rest of the nodes in the subset, which is given by the

inductive argument.

Proof of Lemma 1. For q ∈ {1, ..., Q}, n ∈ {1, ..., N}, we let

Vq,n be i.i.d. random variables uniformly distributed on F2T .

We let the intermediate values vq,n be the realizations of Vq,n.

For some Q ⊆ {1, . . . , Q} and N ⊆ {1, . . . , N}, we define

VQ,N , {Vq,n : q ∈ Q, n ∈ N}. (35)

Since each message Xk is generated as a function of the

intermediate values that are computed at Node k, the following

equation holds for all k ∈ {1, ...,K}.

H(Xk|V:,Mk
) = 0, (36)

where we use “:” to denote the set of all possible indices.

The validity of the shuffling scheme requires that for all

k ∈ {1, ...,K}, the following equation holds :

H(VWk,:|X:, V:,Mk
) = 0. (37)

For a subset S ⊆ {1, ...,K}, we define

YS , (VWS ,:, V:,MS
), (38)

which contains all the intermediate values required by the

nodes in S and all the intermediate values known locally by

the nodes in S after the Map phase.

For any subset S ⊆ {1, . . . ,K} and a file assignment M,

we denote the number of files that are exclusively mapped by

j nodes in S as aj,SM :

aj,SM ,
∑

J⊆S:|J |=j

|(∩
k∈J

Mk)\(∪
i/∈J

Mi)|, (39)

and the message symbols communicated by the nodes whose

indices are in S as

XS = {Xk : k ∈ S}. (40)

Then we prove the following claim.

Claim 1. For any subset S ⊆ {1, ...,K}, we have

H(XS |YSc) ≥ T

|S|
∑

j=1

aj,SM

Q

K
·
|S| − j

j
, (41)

where Sc , {1, . . . ,K}\S denotes the complement of S . �

We prove Claim 1 by induction.

a. If S = {k} for any k ∈ {1, . . . ,K}, obviously

H(Xk|Y{1,...,K}\{k}) ≥ 0 = Ta
1,{k}
M

Q

K
·
1− 1

1
. (42)

b. Suppose the statement is true for all subsets of size S0.

For any S ⊆ {1, ...,K} of size |S| = S0+1 and any k ∈ S ,

we have

H(XS |YSc)

=
1

|S|

∑

k∈S

H(XS , Xk|YSc) (43)

=
1

|S|

∑

k∈S

(H(XS |Xk, YSc) +H(Xk|YSc)) (44)

≥
1

|S|

∑

k∈S

H(XS |Xk, YSc) +
1

|S|
H(XS |YSc). (45)

12

From (45), we have

H(XS |YSc) ≥
1

|S| − 1

∑

k∈S

H(XS |Xk, YSc) (46)

≥
1

S0

∑

k∈S

H(XS |Xk, V:,Mk
, YSc) (47)

=
1

S0

∑

k∈S

H(XS |V:,Mk
, YSc). (48)

For each k ∈ S , we have the following subset version of

(36) and (37).

H(Xk|V:,Mk
, YSc) = 0, (49)

H(VWk,:|XS , V:,Mk
, YSc) = 0. (50)

Consequently,

H(XS , VWk,:|V:,Mk
, YSc) = H(XS |V:,Mk

, YSc) (51)

=H(VWk,:|V:,Mk
, YSc) +H(XS |VWk,:, V:,Mk

, YSc). (52)

The first term on the RHS of (52) can be lower bounded as

follows.

H(VWk,:|V:,Mk
, YSc) = H(VWk,:|V:,Mk

, VWSc ,:, V:,MSc)

(a)
= H(VWk,:|V:,Mk

, V:,MSc) (53)

(b)
= H(VWk,:|VWk,Mk∪MSc) (54)

(c)
=
∑

q∈Wk

H(V{q},:|V{q},Mk∪MSc) (55)

(d)
=

Q

K
T

S0∑

j=0

a
j,S\{k}
M (56)

≥
Q

K
T

S0∑

j=1

a
j,S\{k}
M , (57)

where (a) is due to the independence of intermediate values

and the fact that Wk ∩ WSc = ∅ (different nodes calcu-

late different output functions), (b) and (c) are due to the

independence of intermediate values, and (d) is due to the

independence of the intermediate values and the fact that

|Wk| =
Q
K .

The second term on the RHS of (52) can be lower bounded

by the induction assumption:

H(XS |VWk,:, V:,Mk
, YSc) = H(XS\{k}|Y(S\{k})c) (58)

≥ T

S0∑

j=1

a
j,S\{k}
M

Q

K
·
S0 − j

j
.

(59)

Thus by (48), (52), (57) and (59), we have

H(XS |YSc) ≥
1

S0

∑

k∈S

H(XS |V:,Mk
, YSc) (60)

=
1

S0

∑

k∈S

(

H(VWk,:|V:,Mk
, YSc)

+H(XS |VWk,:, V:,Mk
, YSc)

)

(61)

≥
1

S0

∑

k∈S

(

T

S0∑

j=1

a
j,S\{k}
M

Q

K

+ T

S0∑

j=1

a
j,S\{k}
M

Q

K
·
S0 − j

j

)

(62)

=
T

S0

∑

k∈S

S0∑

j=1

a
j,S\{k}
M

Q

K
·
S0

j
(63)

=T

S0∑

j=1

Q

K
·
1

j

∑

k∈S

a
j,S\{k}
M . (64)

By the definition of aj,SM , we have the following equations.
∑

k∈S

a
j,S\{k}
M

=
∑

k∈S

N∑

n=1

✶(file n is only mapped by some nodes in S\{k})

× ✶(file n is mapped by j nodes) (65)

=
N∑

n=1

✶(file n is only mapped by j nodes in S)

×
∑

k∈S

✶(file n is not mapped by Node k) (66)

=

N∑

n=1

✶(file n is only mapped by j nodes in S)(|S| − j)

(67)

=aj,SM (S0 + 1− j). (68)

Applying (68) to (64) yields

H(XS |YSc) ≥ T

S0∑

j=1

aj,SM

Q

K
·
S0 + 1− j

j
(69)

= T

S0+1∑

j=1

aj,SM

Q

K
·
S0 + 1− j

j
. (70)

c. Thus for all subsets S ⊆ {1, ...,K}, the following

equation holds:

H(XS |YSc) ≥ T

|S|
∑

j=1

aj,SM

Q

K
·
|S| − j

j
, (71)

which proves Claim 1.

Then by Claim 1, let S = {1, ...,K} be the set of all K
nodes,

L∗
M ≥

H(XS |YSc)

QNT
≥

K∑

j=1

ajM
N

·
K − j

Kj
. (72)

This completes the proof of Lemma 1. �

VII. CONVERSE OF THEOREM 2

In this section, we prove the lower bound on L∗(r, s) in

Theorem 2, which generalizes the converse result of Theo-

rem 1 for the case s > 1. Since the lower bound on L∗(r, 1)
in Theorem 2 exactly matches the lower bound on L∗(r) in

13

Theorem 1, we focus on the case s > 1 (i.e., each Reduce

function is calculated by 2 or more nodes) throughout this

section.

We denote the minimum communication load under a

particular file assignment M as L∗
M(s), and we present a

lower bound on L∗
M(s) in the following lemma.

Lemma 2. L∗
M(s) ≥

K∑

j=1

aj
M

N

min{j+s,K}∑

ℓ=max{j,s}

(K−j
ℓ−j)(

j
ℓ−s)

(Ks)
· ℓ−j

ℓ−1 ,

where ajM is defined in (22).

In the rest of this section, we first prove the converse part

of Theorem 2 by showing L∗(r, s) ≥
min{r+s,K}∑

ℓ=max{r,s}

(K−r
ℓ−r)(

r
ℓ−s)

(Ks)
·

ℓ−r
ℓ−1 , and then give the proof of Lemma 2.

Converse Proof of Theorem 2. The minimum communication

load L∗(r, s) is lower bounded by the minimum value of

L∗
M(s) over all possible file assignments having a computation

load of r:

L∗(r, s) ≥ inf
M:|M1|+···+|MK |=rN

L∗
M(s). (73)

For every file assignment M such that |M1|+· · ·+|MK | =
rN , {ajM}Kj=1 satisfy the same conditions as the case of s = 1
in (25), (26) and (27).

For a general computation load 1 ≤ r ≤ K, and

the function Lcoded(r, s) =
min{r+s,K}∑

ℓ=max{r+1,s}

ℓ(Kℓ)(
ℓ−2
r−1)(

r
ℓ−s)

r(Kr)(
K
s)

=

min{r+s,K}∑

ℓ=max{r,s}

(K−r
ℓ−r)(

r
ℓ−s)

(Ks)
· ℓ−r
ℓ−1 as defined in (20), we first find

the line p + qj as a function of 1 ≤ j ≤ K connecting the

two points (⌊r⌋, Lcoded(⌊r⌋, s)) and (⌈r⌉, Lcoded(⌈r⌉, s)). More

specifically, we find p, q ∈ R such that

p+ qj|j=⌊r⌋ = Lcoded(⌊r⌋, s), (74)

p+ qj|j=⌈r⌉ = Lcoded(⌈r⌉, s). (75)

Then by the convexity of the function Lcoded(j, s) in j, we

have for integer-valued j = 1, . . . ,K,

Lcoded(j, s) =

min{j+s,K}
∑

ℓ=max{j,s}

(
K−j
ℓ−j

)(
j

ℓ−s

)

(
K
s

) ·
ℓ− j

ℓ− 1
≥ p+qj. (76)

Next, we first apply Lemma 2 to (73), then by (76), we have

L∗(r, s) ≥ inf
M:|M1|+···+|MK |=rN

K∑

j=1

ajM
N

· (p+ qj) (77)

= inf
M:|M1|+···+|MK |=rN

K∑

j=1

ajM
N

· p+
K∑

j=1

jajM
N

· q

(78)

(a)
= p+ qr, (79)

where (a) is due to the constraints on {ajM}Kj=1 in (26) and

(27).

Therefore, L∗(r, s) is lower bounded by the lower convex

envelop of the points {(r, Lcoded(r, s)) : r ∈ {1, ...,K}}. This

completes the proof of the converse part of Theorem 2. �

The proof of lemma 2 follows the same steps of the proof

of Lemma 1, where a lower bound on the number of bits

communicated by any subset of nodes, for the case of s > 1,

is established by induction.

Proof of Lemma 2. We first prove the following claim.

Claim 2. For any subset S ⊆ {1, ...,K}, we have

H(XS |YSc)≥QT

|S|
∑

j=1

aj,SM

min{j+s,|S|}
∑

ℓ=max{j,s}

(
|S|−j
ℓ−j

)(
j

ℓ−s

)

(
K
s

) ·
ℓ− j

ℓ− 1
,

(80)

where aj,SM is defined in (39). �

We prove Claim 2 by induction.

a. If S = {k} for any k ∈ {1, . . . ,K}, obviously

H(Xk|Y{1,...,K}\{k}) ≥ 0 = QTa
1,{k}
M

1∑

ℓ=s

(
0

ℓ−1

)(
1

ℓ−s

)

(
K
s

) .

(81)

b. Suppose the statement is true for all subsets of size S0.

For any S ⊆ {1, ...,K} of size |S| = S0+1, and all k ∈ S ,

we have as derived in (61):

H(XS |YSc) ≥
1

S0

∑

k∈S

(

H(XS |VWk,:, V:,Mk
, YSc)

+H(VWk,:|V:,Mk
, YSc)

)

, (82)

where YSc = (VWSc ,:, V:,MSc).

The first term on the RHS of (82) is lower bounded by the

induction assumption:

H(XS |VWk,:, V:,Mk
, YSc) = H(XS\{k}|Y(S\{k})c) (83)

≥ QT

S0∑

j=1

a
j,S\{k}
M

min{j+s,S0}∑

ℓ=max{j,s}

(
S0−j
ℓ−j

)(
j

ℓ−s

)

(
K
s

) ·
ℓ− j

ℓ− 1
. (84)

The second term on the RHS of (82) can be calculated based

on the independence of intermediate values:

H(VWk,:|V:,Mk
, YSc)

=H(VWk,:|V:,Mk
, VWSc ,:, V:,MSc) (85)

(a)
=H(VWk,:|VWk,Mk∪MSc , VWSc ,:) (86)

(b)
=
∑

q∈Wk

H(V{q},:|V{q},Mk∪MSc , VWSc ,:) (87)

(c)
=

Q
(
K
s

)

(
|S| − 1

s− 1

)

T

S0∑

j=0

a
j,S\{k}
M (88)

≥
Q
(
K
s

)

(
|S| − 1

s− 1

)

T

S0∑

j=1

a
j,S\{k}
M , (89)

where (a) and (b) are due to the independence of the in-

termediate values, and (c) is due to the uniform distribution

of the output functions such that each node in S calculates
Q

(Ks)
·
(
|S|−1
s−1

)
output functions computed exclusively by s nodes

in S .

14

Thus by (82), (84), and (89), we have

H(XS |YSc)

≥
QT

S0

∑

k∈S

S0∑

j=1

a
j,S\{k}
M

(min{j+s,S0}∑

ℓ=max{j,s}

(
S0−j
ℓ−j

)(
j

ℓ−s

)

(
K
s

) ·
ℓ− j

ℓ− 1

+

(
S0

s−1

)

(
K
s

)

)

(90)

=
QT

S0

S0∑

j=1

(min{j+s,S0}∑

ℓ=max{j,s}

(
S0−j
ℓ−j

)(
j

ℓ−s

)

(
K
s

) ·
ℓ− j

ℓ− 1
+

(
S0

s−1

)

(
K
s

)

)

·
∑

k∈S

a
j,S\{k}
M (91)

=QT ·
S0 + 1− j

S0

S0∑

j=1

(min{j+s,S0}∑

ℓ=max{j,s}

(
S0−j
ℓ−j

)(
j

ℓ−s

)

(
K
s

) ·
ℓ− j

ℓ− 1

+

(
S0

s−1

)

(
K
s

)

)

aj,SM (92)

=QT

S0+1∑

j=1

S0 + 1− j

S0

(min{j+s,S0}∑

ℓ=max{j,s}

(
S0−j
ℓ−j

)(
j

ℓ−s

)

(
K
s

) ·
ℓ− j

ℓ− 1

+

(
S0

s−1

)

(
K
s

)

)

aj,SM . (93)

For each j ∈ {1, . . . , S0 + 1} in (93), we have

S0 + 1− j

S0

(min{j+s,S0}∑

ℓ=max{j,s}

(
S0−j
ℓ−j

)(
j

ℓ−s

)

(
K
s

) ·
ℓ− j

ℓ− 1
+

(
S0

s−1

)

(
K
s

)

)

=
S0 + 1− j

S0

(
K
s

)

(
min{j+s,S0}∑

ℓ=max{j,s}

(
S0 − j

ℓ− j

)(
j

ℓ− s

)
ℓ− j

ℓ− 1

+

min{j+s,S0+1}
∑

ℓ=max{j+1,s}

(
S0 − j

ℓ− j − 1

)(
j

ℓ− s

))

(94)

=
S0 + 1− j

S0

(
K
s

)

(
min{j+s,S0+1}

∑

ℓ=max{j,s}

(
S0 − j

ℓ− j

)(
j

ℓ− s

)
ℓ− j

ℓ− 1

+

min{j+s,S0+1}
∑

ℓ=max{j,s}

(
S0 − j

ℓ− j − 1

)(
j

ℓ− s

))

(95)

=
1
(
K
s

)

min{j+s,S0+1}
∑

ℓ=max{j,s}

(
S0 + 1− j

ℓ− j

)(
j

ℓ− s

)

(

S0 − ℓ+ 1

S0
·
ℓ− j

ℓ− 1
+
ℓ− j

S0

)

(96)

=
1
(
K
s

)

min{j+s,S0+1}
∑

ℓ=max{j,s}

(
S0 + 1− j

ℓ− j

)(
j

ℓ− s

)
ℓ− j

ℓ− 1
. (97)

Applying (97) into (93) yields

H(XS |YSc)

≥QT
S0+1∑

j=1

aj,SM

min{j+s,S0+1}
∑

ℓ=max{j,s}

(
S0+1−j

ℓ−j

)(
j

ℓ−s

)

(
K
s

) ·
ℓ− j

ℓ− 1
(98)

= QT

|S|
∑

j=1

aj,SM

min{j+s,|S|}
∑

ℓ=max{j,s}

(
|S|−j
ℓ−j

)(
j

ℓ−s

)

(
K
s

) ·
ℓ− j

ℓ− 1
. (99)

Since (99) holds for all subsets S of size |S| = S0 +1, we

have proven Claim 2.

Then by Claim 2, let S = {1, ...,K} be the set of all K
nodes,

L∗
M(s) ≥

H(XS |YSc)

QNT

≥
K∑

j=1

ajM
N

min{j+s,K}
∑

ℓ=max{j,s}

(
K−j
ℓ−j

)(
j

ℓ−s

)

(
K
s

) ·
ℓ− j

ℓ− 1
. (100)

This completes the proof of Lemma 2. �

VIII. IMPLEMENTATION AND EMPIRICAL EVALUATION OF

CODED DISTRIBUTED COMPUTING

In this section, we demonstrate the impact of the proposed

Coded Distributed Computing (CDC) scheme on balancing

the time spent on task execution and the time spent on data

movement, in order to speed up practical distributed comput-

ing applications. In particular, let us consider a MapReduce-

type application for which the total execution time is roughly

composed of the time spent executing the Map tasks, denoted

by Tmap, the time spent shuffling intermediate values, denoted

by Tshuffle, and the time spent executing the Reduce tasks,

denoted by Treduce, i.e.,

Ttotal, MR ≈ Tmap + Tshuffle + Treduce. (101)

Using CDC, we can leverage r× more computations in

the Map phase, in order to reduce the communication load

by the same multiplicative factor. Hence, ignoring the coding

overheads, CDC promises an approximate total execution time

of

Ttotal, CDC ≈ rTmap +
1
rTshuffle + Treduce. (102)

To minimize the above execution time, one would choose

r∗ =
⌊√

Tshuffle

Tmap

⌋

or
⌈√

Tshuffle

Tmap

⌉

, resulting in the minimum

execution time of

T ∗
total, CDC ≈ 2

√

TshuffleTmap + Treduce. (103)

For example, in an application that Tshuffle is 10× - 100× larger

than Tmap + Treduce, by comparing from (101) and (103), we

note that CDC can reduce the execution time by approximately

1.5× - 5×.

In the rest of this section, we empirically demonstrate

the performance gain of applying CDC to TeraSort [11],

which is a commonly used Hadoop benchmark for dis-

tributed sorting terabytes of data [32]. In particular, we first

incorporate the coding ideas in CDC into TeraSort to

develop a novel coded distributed sorting algorithm, named

CodedTeraSort, which imposes structured redundancy in

the input data, in order to enable in-network coding opportuni-

ties that overcome the data shuffling bottleneck of TeraSort.

Then, we evaluate the performance of CodedTeraSort on

Amazon EC2 clusters, and observe a 1.97× - 3.39× speedup,

compared with TeraSort, for typical settings of interest.

15

A. TeraSort

TeraSort [32] is a conventional algorithm for distributed

sorting of a large amount of data. The input data that is to be

sorted is in the format of key-value (KV) pairs, meaning that

each input KV pair consists of a key and a value. For example,

the domain of the keys can be 10-byte integers, and the domain

of the values can be arbitrary strings. TeraSort sorts the

input data according to their keys, e.g., sorting integers.

1) Algorithm Description: Let us consider implementing

TeraSort over K distributed computing nodes, which con-

sists of 5 stages: File Placement, Key Domain Partitioning,

Map Phase, Shuffle Phase, and Reduce Phase. In File Place-

ment, all input KV pairs are split into K disjoint files, and

each file is placed on one of the K nodes. In Key Domain

Partitioning, the domain of the keys is split into K partitions,

and each node will be responsible for sorting the KV pairs

whose keys fall into one of the partitions. In Map Phase,

each node hashes each KV pair in its locally stored file

into one of the K partitions, according to its key. In Shuffle

Phase, the KV pairs in the same partition are transferred

to the node that is responsible for sorting that partition. In

Reduce Stage, each node locally sorts KV pairs belonging to

its assigned partition. We illustrate the TeraSort algorithm

using a simple example shown in Fig. 7.

Hash

Map

1

17

34

51

69

83

8

23

39

52

72

87

12

28

45

53

78

90

16

30

47

64

80

99

1,17

34

51,69

83

8,23

39

52,72

87

12

28,45

53

78,90

16

30,47

64

80,99

Sort
[0,25)

1,17

8,23

12

16

34

39

28,45

30,47

51,69

52,72

53

64

83

87

78,90

80,99

1,8,12,16,17,23

28,30,34,39,45,47

51,52,53,64,69,72

78,80,83,87,90,99

Hash

Hash

Hash

Shuffle Reduce

Sort
[25,50)

Sort
[50,75)

Sort
[75,100]

Node 1

Node 2

Node 3

Node 4

Fig. 7: Illustration of TeraSort algorithm with K = 4 nodes and
key domain partitions [0, 25), [25, 50), [50, 75), [75, 100]. A dotted
box represents an input file. An input file is hashed into 4 groups of
KV pairs, one for each partition. For each of the 4 partitions, the KV
pairs belonging to that partition computed on all 4 nodes are fetched
to a corresponding node, which sorts all KV pairs in that partition
locally.

2) Performance Evaluation: To understand the perfor-

mance of TeraSort, we performed an experiment on Ama-

zon EC2 to sort 12GB of data by running TeraSort on 16

instances.3 The breakdown of the total execution time is shown

in Table I.

TABLE I: Performance of TeraSort sorting 12GB data with K =
16 instances and 100 Mbps network speed

Map Pack Shuffle Unpack Reduce Total
(sec.) (sec.) (sec.) (sec.) (sec.) (sec.)

1.86 2.35 945.72 0.85 10.47 961.25

We observe from Table I that for a conventional TeraSort

execution, 98.4% of the total execution time was spent in

3We note that EC2 uses virtual machines, and each instance may not be
hosted by a dedicated physical machine.

data shuffling, which is 508.5× of the time spent in the

Map phase. Given the fact that data shuffling dominates

the job execution time, the principle of optimally trading

computation for communication of the proposed CDC scheme

can be applied to significantly improve the performance of

TeraSort. For example, when executing the same sorting

job using a coded version of TeraSort with a computation

load of r = 10, according to (102), we could theoretically save

the total execution time by approximately 8×. This motivates

us to develop a novel coded distributed sorting algorithm,

named CodedTeraSort, which is briefly described in the

next sub-section.

B. Coded TeraSort

We develop the CodedTeraSort algorithm by applying

the proposed CDC scheme for the case of s = 1 (see

Example 1 in Section IV for an illustration) to the above

described TeraSort algorithm. CodedTeraSort exploits

redundant computations on the input files in the Map phase,

creating in-network coding opportunities to significantly slash

the load of data shuffling. In particular, the execution of

CodedTeraSort consists of following 6 stages of opera-

tions. Here we give high-lever descriptions of these operations,

and we refer the interested readers to [3] for more detailed

descriptions.

1) Structured Redundant File Placement. The entire input

KV pairs are split into many small files, each of which

is repeatedly placed on 1 ≤ r ≤ K nodes (i.e., a

computation load of r), according to the particular pattern

specified by the CDC scheme.

2) Map. Each node applies the hashing operation as in

TeraSort on each of its assigned files.

3) Encoding to Create Coded Packets. Each node generates

coded multicast packets from local results computed in

Map phase, according to the encoding process of the CDC

scheme.

4) Multicast Shuffling. Each node multicasts each of its

generated coded packet to a specific set of r other nodes.

5) Decoding. Each node locally decodes the required KV

pairs from the received coded packets.

6) Reduce. Each node locally sorts the KV pairs within its

assigned partition as in the Reduce phase of TeraSort.

C. Empirical Evaluations

We imperially demonstrate the performance gain of

CodedTeraSort through experiments on Amazon EC2

clusters. In this sub-section, we first present some choices

we have made for the implementation. Then, we discuss the

experiment results.

1) Implementation Choices: We first describe the following

common implementation choices that we have made for both

TeraSort and CodedTeraSort algorithms.

Data Format: All input KV pairs are generated from

TeraGen [11] in the standard Hadoop package. Each input

KV pair consists of a 10-byte key and a 90-byte value. A key

is a 10-byte unsigned integer, and the value is an arbitrary

16

string of 90 bytes. The KV pairs are sorted based on their

keys, using the standard integer ordering.

Library: We implement both TeraSort and

CodedTeraSort algorithms in C++, and use Open

MPI library [33] for communications between EC2 instances.

System Architecture: We employ a system architecture that

consists of a coordinator node and K worker nodes, for some

K ∈ N. Each node is run as an EC2 instance. The coordinator

node is responsible for creating the key partitions and placing

the input files on the local disks of the worker nodes. The

worker nodes are responsible for distributedly executing the

stages of the sorting algorithms.

Node 1 Node 2 Node 3 Node 4

time

Node 1 Node 2 Node 3 Node 4

time

(a) serial unicast

(b) serial multicast

Fig. 8: (a) Serial unicast in the Shuffle phase of TeraSort; a solid
arrow represents a unicast. (b) Serial multicast in the Multicast Shuffle
phase of CodedTeraSort; a group of solid arrows starting at the
same node represents a multicast.

In the TeraSort implementation, each node sequentially

steps through Map, Pack, Shuffle, Unpack, and Reduce stages.

The Pack stage serializes each intermediate value to a contin-

uous memory array to ensure that a single TCP flow is created

for each intermediate value (which may contain multiple

KV pairs) when MPI_Send is called4. The Unpack stage

deserializes the received data to a list of KV pairs. In the

Shuffle stage, intermediate values are unicast serially, meaning

that there is only one sender node and one receiver node at

any time instance. Specifically, as illustrated in Fig. 8(a), Node

1 starts to unicast to Nodes 2, 3, and 4 back-to-back. After

Node 1 finishes, Node 2 unicasts back-to-back to Nodes 1, 3,

and 4. This continues until Node 4 finishes.

In the CodedTeraSort implementation, each node se-

quentially steps through CodeGen, Map, Encode, Multicast

Shuffling, Decode, and Reduce stages. In the CodeGen

(or code generation) stage, firstly, each node generates all

4Creating a TCP flow per KV pair leads to inefficiency from overhead and
convergence issue.

file indices, as subsets of r nodes. Then each node uses

MPI_Comm_split to initialize
(

K
r+1

)
multicast groups each

containing r + 1 nodes on Open MPI, such that multicast

communications will be performed within each of these

groups. The serialization and deserialization are implemented

respectively in the Encode and the Decode stages. In Multicast

Shuffling, MPI_Bcast is called to multicast a coded packet in

a serial manner, so only one node multicasts one of its encoded

packets at any time instance. Specifically, as illustrated in Fig.

8(b), Node 1 multicasts to the other 2 nodes in each multicast

group Node 1 is in. For example, Node 1 first multicasts to

Node 2 and 3 in the multicast group {1, 2, 3}. After Node 1
finishes, Node 2 starts multicasting in the same manner. This

process continues until Node 4 finishes.
2) Experiment Results: We evaluate the run-time perfor-

mance of TeraSort and CodedTeraSort, for different

combinations of the number of workers K and the computation

load 1 ≤ r ≤ K. All experiments are repeated 5 times, and

the average values are recorded.

In Table II and Table III, we list the breakdowns of the

average execution times to sort 12 GB of input data using K =
16 workers and K = 20 workers respectively. Here we limit

the incoming and outgoing traffic rates of each instance to 100
Mbps. This is to alleviate the effects of the bursty behaviors of

the transmission rates in the beginning of some TCP sessions,

given the particular size of the data to be sorted. We observe

an overall 1.97× - 3.39× speedup of CodedTeraSort as

compared with TeraSort. From the experiment results we

make the following observations:

• For CodedTeraSort, the time spent in the CodeGen

stage is proportional to
(

K
r+1

)
, which is the number of

multicast groups.

• The Map time of CodedTeraSort is approximately

r times higher than that of TeraSort. This is be-

cause that each node hashes r times more KV pairs

than that in TeraSort. Specifically, the ratios of the

CodedTeraSort’s Map time to the TeraSort’s Map

time from Table II are 6.03/1.86 ≈ 3.2 and 10.84/1.86 ≈
5.8, and from Table III are 4.68/1.47 ≈ 3.2 and

8.59/1.47 ≈ 5.8.

• While CodedTeraSort theoretically promises a factor

of more than r× reduction in shuffling time, the actual

gains observed in the experiments are slightly less than r.

For example, for the experiment with K = 16 nodes and

r = 3, as shown in Table II, the speedup of the Shuffle

stage is 945.72/412.22 ≈ 2.3 < 3. This phenomenon

is caused by the following two factors. 1) Open MPI’s

multicast API (MPI_Bcast) has an inherent overhead

per a multicast group, for instance, a multicast tree is

constructed before multicasting to a set of nodes. 2) Using

the MPI_Bcast API, the time of multicasting a packet

to r nodes is higher than that of unicasting the same

packet to a single node. In fact, as measured in [24], the

multicasting time increases logarithmically with r.

Further, we observe the following trends from both tables:

The impact of computation load r: As r increases, the

shuffling time reduces by approximately r times. However,

the Map execution time increases linearly with r, and more

17

TABLE II: Sorting 12 GB data with K = 16 worker instances and 100 Mbps network speed

CodeGen Map Pack/Encode Shuffle Unpack/Decode Reduce Total Time Speedup
(sec.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.)

TeraSort: – 1.86 2.35 945.72 0.85 10.47 961.25
CodedTeraSort: r = 3 6.06 6.03 5.79 412.22 2.41 13.05 445.56 2.16×
CodedTeraSort: r = 5 23.47 10.84 8.10 222.83 3.69 14.40 283.33 3.39×

TABLE III: Sorting 12 GB data with K = 20 worker instances and 100 Mbps network speed

CodeGen Map Pack/Encode Shuffle Unpack/Decode Reduce Total Time Speedup
(sec.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.)

TeraSort: – 1.47 2.00 960.07 0.62 8.29 972.45
CodedTeraSort: r = 3 19.32 4.68 4.89 453.37 1.87 9.73 493.86 1.97×
CodedTeraSort: r = 5 140.91 8.59 7.51 269.42 3.70 10.97 441.10 2.20×

importantly the CodeGen time increases exponentially with

r as
(

K
r+1

)
. Hence, for small values of r (r < 6) we observe

overall reduction in execution time, and the speedup increases.

However, as we further increase r, the CodeGen time will

dominate the execution time, and the speedup decreases.

Hence, in our evaluations, we have limited r to be at most

5.5

The impact of worker number K: As K increases, the

speedup decreases. This is due to the following two rea-

sons. 1) The number of multicast groups, i.e.,
(

K
r+1

)
, grows

exponentially with K, resulting in a longer execution time

of the CodeGen process. 2) When more nodes participate

in the computation, for a fixed r, less amount of KV pairs

are hashed at each node locally in the Map phase, resulting

in less locally available intermediate values and a higher

communication load. Hence, given more worker nodes, one

would preferably use larger computation load to achieve a

better run-time performance.

IX. CONCLUDING REMARKS AND FUTURE DIRECTIONS

We introduced a scalable distributed computing framework

motivated by MapReduce, which is suited for arbitrary types

of output functions. We formulated and exactly characterized

an information-theoretic tradeoff between computation load

and communication load within this framework. In particular,

we proposed Coded Distributed Computing (CDC), a coded

scheme that reduces the communication load by a factor that

can grow with the network size, illustrating the role of coding

in speeding up distributed computing jobs. We also proved

a tight information-theoretic lower bound on the minimum

communication load, using any data shuffling scheme, which

exactly matches the communication load achieved by CDC.

This result reveals a fundamental relationship between com-

putation and communication in distributed computing–the two

are inversely proportional to each other. Moreover, we applied

the proposed CDC scheme to the conventional TeraSort

algorithm to develop a novel distributed sorting algorithm,

named CodedTeraSort, and empirically demonstrated the

performance gain of CodedTeraSort through extensive

experiments on Amazon EC2 clusters.

Finally, we discuss some follow-up research directions of

this work.

5The redundancy parameter r is also limited by the total storage available
at the nodes. Since for a choice of redundancy parameter r, each piece of
input KV pairs should be stored at r nodes, we can not increase r beyond
total available storage at the worker nodes

input size
.

Heterogeneous Networks with Asymmetric Tasks. It is

common to have computing nodes with heterogeneous storage,

processing and communication capacities within computer

clusters (e.g., Amazon EC2 clusters composed of heteroge-

neous computing instances). In addition, processing different

parts of the dataset can generate intermediate results with

different sizes (e.g., performing data analytics on highly-

clustered graphs). For computing over heterogeneous nodes,

one solution is to break the more powerful nodes into multiple

smaller virtual nodes that have homogeneous capability, and

then apply the proposed CDC scheme for the homogeneous

setting. When intermediate results have different sizes, the

proposed coding scheme still applies, but the coding operations

are not symmetric as in the case of homogeneous intermediate

results (e.g., one may now need to compute the XOR of

two data segments with different sizes). Alternatively, we

can employ a low-complexity greedy approach, in which we

assign the Map tasks to maximize the number of multicasting

opportunities that simultaneously deliver useful information

to the largest possible number of nodes. Some preliminary

studies along this direction have been conducted to obtain

the solutions for some special cases (see, e.g., [34], [35]).

Nevertheless, systematically characterizing the optimal re-

source allocation strategies and coding schemes for general

heterogeneous networks with asymmetric tasks remains an

interesting open problem.

Straggling/Failing Computing Nodes. Other than the com-

munication bottleneck, the effect of straggling servers also

severely degrades the run-time performance of distributed

computing applications (see e.g., [36]). Recently in [24],

Maximum-Distance-Separable (MDS) codes were utilized to

encode linear computation tasks, providing robustness to a

certain number of stragglers. Following the results in [24],

coded computing strategies have been proposed to efficiently

deal with the stragglers for various computation tasks and

network settings (see, e.g., [37]–[40]). In [41], we have su-

perimposed the proposed CDC scheme on top of the MDS

codes, developing a unified coding framework for distributed

computing with straggling servers. This framework achieves

a flexible tradeoff between computation latency in the Map

phase and communication load in the Shuffle phase, which

has the CDC scheme (or minimum bandwidth code) and the

MDS code (or minimum latency code) as the two end points.

Nevertheless, designing resource allocation strategies and cod-

ing techniques to optimize the run-time performance over

distributed computing clusters with stragglers is a challenging

18

open problem.

Multi-Stage Computation Tasks. Unlike simple computa-

tion tasks like Grep, Join and Sort, many distributed com-

puting applications contain multiples stages of MapReduce

computations. Examples of these applications include machine

learning algorithms [42], SQL queries for databases [43], [44],

and scientific analytics [45]. One can express the computation

logic of a multi-stage application as a directed acyclic graph

(DAG) [46], in which each vertex represents a logical step

of data transformation, and each edge represents the dataflow

across processing vertices. In order to speed up multi-stage

computation tasks using codes, while one straightforward ap-

proach is to apply the proposed CDC scheme for the cascaded

distributed computing framework (see Theorem 2) to compute

each stage locally, we expect to achieve a higher reduction

in bandwidth consumption and response time by globally

designing codes for the entire task graph and accounting

for interactions between consecutive stages. A preliminary

exploration along this direction was recently presented in [47].

Multi-Layer Networks and Structured Topology. So

far we have only considered a single-layer topology of the

distributed computing nodes, in which each node can multicast

to an arbitrary number of other nodes at the same cost as

unicasting to a single node. However, in practical data center

networks, nodes can be connected through multiple switches at

different layers with different capacities, forming a hierarchical

multi-root tree topology (e.g., fat-tree topology [48]). In this

case, we need to generalize our communication model to in-

clude more structured topologies, and develop coded shuffling

strategies that account for (1) path lengths of shuffled data (2)

congestion at links higher up in the topology; and (3) differ-

ent link capacities and multicast-costs at different layers of

network topology. We have made preliminary progress in [49]

for a star topology (motivated by wireless edge computing),

where nodes are connected via only one access point (or switch

layer).

Joint Storage and Computation Optimization. We have

so far assumed that we can design the placement of the input

files to create coding opportunities during the computation pro-

cess. However, in practical file storage systems, data blocks are

often stored without prior knowledge about the computations

that will be performed on them, and moving the data across the

nodes before the computation is often too costly. In this case,

even without the capability of designing the data placement

as exactly specified by the CDC scheme, one can still take

advantage of the inherent data redundancy (e.g., GFS [50]

and HDFS [51] by default place replicas of each data block

on 3 distributed nodes) to create coded multicast opportunities,

significantly reducing the communication load.

We plot in Fig. 9 the average communication load achieved

by a coded shuffling scheme similar to the one presented in

Section V-B (with the modification that each node zero-pads

its associated data segments to the length of the longest one

before coding), when each input file is placed and mapped

at r out of K nodes chosen uniformly at random, and

compare it with the communication load achieved by CDC

where the input files are placed based on the Map phase

design in Section V-A. As demonstrated in Fig. 9, without

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Computation Load (r)

C
o

m
m

u
n

ic
a

ti
o

n
 L

o
a

d
 (

L
)

Uncoded Scheme

CDC Data Placement

Random Data Placement

Fig. 9: Comparison of the average communication load by placing
and mapping every input file randomly at r out of K = 10 nodes
with the communication load achieved by placing the files specified
by the CDC scheme. Here we compute Q = 10 output functions
from 2520 input files using K = 10 distributed computing nodes.

requiring the files to be placed as exactly described by the

CDC scheme, one can still exploit the data redundancy to

achieve a communication load that is superlinear with respect

to the computation load. Therefore, the coded data shuffling

scheme of CDC can effectively reduce the communication

loads of computation jobs on general data storage systems.

This behavior that a random data placement achieves close-

to-optimum performance has also been reported in [49] for

a decentralized wireless distributed computing platform, and

in [21] for a decentralized caching system.

Coded Edge/Fog Computing. In the emerging mobile

Edge/Fog computing paradigm (see, e.g., [52], [53]), abundant

computation resources scattered across the network edge (e.g.,

smartphones, tablets and smart cars) are harvested to perform

data-intensive computations collaboratively. In this scenario,

coding opportunities are widely available by injecting redun-

dant storage and computations into the edge network. We en-

vision codes to play a transformational role in Edge/Fog com-

puting for leveraging such redundancy to substantially reduce

the bandwidth consumption and the latency of computing. For

an edge computing scenario where the mobile users upload

the tasks to the edge nodes, and retrieve the computed results

from the edge nodes, we have designed coded computing

architectures in [54], [55], in which coded computations that

are aware of the underlying physical-layer communication are

performed at the edge nodes, achieving the minimum load

of computation and the maximum spectral efficiency simulta-

neously. In [49], we have formulated a wireless distributed

computing framework, in which a cluster of mobile users

collaborate via an access point to simultaneously meet their

computational needs. For this wireless computing platform, we

exploited the coding techniques of CDC to achieve a scalable

design such that the platform can accommodate an unlimited

number of mobile users with a constant amount of bandwidth

consumption. Also in a recent magazine paper [56], we have

demonstrated the opportunities of utilizing coding to improve

the performance of Edge/Fog computing applications (e.g.,

navigation services and recommendation systems).

19

REFERENCES

[1] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded MapReduce,”
53rd Annual Allerton Conference on Communication, Control, and

Computing, Sept. 2015.

[2] ——, “Fundamental tradeoff between computation and communication
in distributed computing,” IEEE International Symposium on Informa-

tion Theory, July 2016.

[3] S. Li, S. Supittayapornpong, M. A. Maddah-Ali, and A. S. Avestimehr,
“Coded terasort,” 6th International Workshop on Parallel and Dis-

tributed Computing for Large Scale Machine Learning and Big Data

Analytics, 2017.

[4] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Sixth USENIX Symposium on Operating System Design

and Implementation, Dec. 2004.

[5] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: cluster computing with working sets,” in Proceedings of the 2nd

USENIX HotCloud, vol. 10, June 2010, p. 10.

[6] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. Vijaykumar,
“Tarazu: optimizing MapReduce on heterogeneous clusters,” in ACM

SIGARCH Computer Architecture News, vol. 40, no. 1, Mar. 2012, pp.
61–74.

[7] Y. Guo, J. Rao, and X. Zhou, “iShuffle: Improving Hadoop performance
with shuffle-on-write,” in Proceedings of the 10th International Confer-

ence on Autonomic Computing, June 2013, pp. 107–117.

[8] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Manag-
ing data transfers in computer clusters with orchestra,” ACM SIGCOMM

Computer Communication Review, vol. 41, no. 4, pp. 98–109, Aug.
2011.

[9] Z. Zhang, L. Cherkasova, and B. T. Loo, “Performance modeling of
MapReduce jobs in heterogeneous cloud environments,” in IEEE Sixth

International Conference on Cloud Computing, June 2013, pp. 839–846.

[10] Amazon.com, “Amazon Elastic Compute Cloud (Amazon EC2),” https:
//aws.amazon.com/ec2/.

[11] “Hadoop TeraSort,” https://hadoop.apache.org/docs/r2.7.1/api/org/
apache/hadoop/examples/terasort/package-summary.html.

[12] A. C.-C. Yao, “Some complexity questions related to distributive com-
puting (preliminary report),” in Proceedings of the eleventh annual ACM

symposium on Theory of computing, Apr. 1979, pp. 209–213.

[13] J. Korner and K. Marton, “How to encode the modulo-two sum of binary
sources,” IEEE Transactions on Information Theory, vol. 25, no. 2, pp.
219–221, Mar. 1979.

[14] A. Orlitsky and A. El Gamal, “Average and randomized communication
complexity,” IEEE Transactions on Information Theory, vol. 36, no. 1,
pp. 3–16, Jan. 1990.

[15] K. Becker and U. Wille, “Communication complexity of group key
distribution,” in Proceedings of the 5th ACM conference on Computer

and communications security, Nov. 1998, pp. 1–6.

[16] E. Kushilevitz and N. Nisan, Communication Complexity. Cambridge
University Press, 2006.

[17] A. Orlitsky and J. Roche, “Coding for computing,” IEEE Transactions

on Information Theory, vol. 47, no. 3, pp. 903–917, Mar. 2001.

[18] B. Nazer and M. Gastpar, “Computation over multiple-access channels,”
IEEE Transactions on Information Theory, vol. 53, no. 10, pp. 3498–
3516, Oct. 2007.

[19] A. Ramamoorthy and M. Langberg, “Communicating the sum of sources
over a network,” IEEE Journal on Selected Areas in Communications,
vol. 31, no. 4, pp. 655–665, Apr. 2013.

[20] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Transactions on Information Theory, vol. 60, no. 5, pp. 2856–
2867, Mar. 2014.

[21] ——, “Decentralized coded caching attains order-optimal memory-rate
tradeoff,” IEEE/ACM Transactions on Networking, Apr. 2014.

[22] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching
in wireless D2D networks,” IEEE Transactions on Information Theory,
vol. 62, no. 2, pp. 849–869, Feb. 2016.

[23] N. Karamchandani, U. Niesen, M. A. Maddah-Ali, and S. Diggavi,
“Hierarchical coded caching,” IEEE International Symposium on Infor-

mation Theory, pp. 2142–2146, June 2014.

[24] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans-

actions on Information Theory, 2017.

[25] A. Rajaraman and J. D. Ullman, Mining of massive datasets. Cambridge
University Press, 2011.

[26] Q. Yu, S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “How to
optimally allocate resources for coded distributed computing?” IEEE

International Conference on Communications (ICC), pp. 1–7, May 2017.

[27] Y. Birk and T. Kol, “Coding on demand by an informed source (ISCOD)
for efficient broadcast of different supplemental data to caching clients,”
IEEE Transactions on Information Theory, vol. 52, no. 6, pp. 2825–
2830, June 2006.

[28] Z. Bar-Yossef, Y. Birk, T. Jayram, and T. Kol, “Index coding with side
information,” IEEE Transactions on Information Theory, vol. 57, no. 3,
pp. 1479–1494, Mar. 2011.

[29] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network infor-
mation flow,” IEEE Transactions on Information Theory, vol. 46, no. 4,
pp. 1204–1216, July 2000.

[30] R. Koetter and M. Medard, “An algebraic approach to network coding,”
IEEE/ACM Transactions on Networking, vol. 11, no. 5, pp. 782–795,
Oct. 2003.

[31] T. Ho, R. Koetter, M. Medard, D. R. Karger, and M. Effros, “The benefits
of coding over routing in a randomized setting,” IEEE International

Symposium on Information Theory, pp. 442–, June 2003.

[32] O. O’Malley, “Terabyte sort on Apache Hadoop,” Yahoo, Tech. Rep.,
May 2008, http://sortbenchmark.org/YahooHadoop.pdf.

[33] “Open MPI: Open source high performance computing,” https://www.
open-mpi.org/.

[34] A. Reisizadeh, S. Prakash, R. Pedarsani, and S. Avestimehr, “Coded
computation over heterogeneous clusters,” in IEEE International Sym-

posium on Information Theory, 2017, pp. 2408–2412.

[35] M. Kiamari, C. Wang, and A. S. Avestimehr, “On heterogeneous coded
distributed computing,” e-print arXiv:1709.00196, 2017, to appear in
IEEE GLOBECOM 2017.

[36] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving MapReduce performance in heterogeneous environments,”
OSDI, vol. 8, no. 4, p. 7, Dec. 2008.

[37] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” in Advances In

Neural Information Processing Systems (NIPS), 2016, pp. 2100–2108.

[38] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” IEEE International Symposium on Information Theory,
pp. 2418–2422, 2017.

[39] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial codes:
an optimal design for high-dimensional coded matrix multiplication,” to

appear in Advances In Neural Information Processing Systems (NIPS),
2017.

[40] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in Proceedings of

the 34th International Conference on Machine Learning (ICML), Aug.
2017, pp. 3368–3376.

[41] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding
framework for distributed computing with straggling servers,” IEEE

NetCod, 2016.

[42] C. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and K. Oluko-
tun, “Map-Reduce for machine learning on multicore,” Advances in

neural information processing systems, vol. 19, 2007.

[43] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,” in
ACM SIGOPS Operating Systems Review, vol. 41, no. 3, June 2007, pp.
59–72.

[44] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and
A. Rasin, “HadoopDB: an architectural hybrid of MapReduce and
DBMS technologies for analytical workloads,” Proceedings of the VLDB

Endowment, vol. 2, no. 1, pp. 922–933, Aug. 2009.

[45] J. Ekanayake, T. Gunarathne, G. Fox, A. S. Balkir, C. Poulain, N. Araujo,
and R. Barga, “DryadLINQ for scientific analyses,” in Fifth IEEE

International Conference on e-Science, 2009, pp. 329–336.

[46] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and C. Curino,
“Apache Tez: A unifying framework for modeling and building data
processing applications,” in Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data, May 2015, pp. 1357–
1369.

[47] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded distributed
computing: Straggling servers and multistage dataflows,” 54th Allerton

Conference on Communication, Control, and Computing, Sept. 2016.

[48] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Computer Communica-

tion Review, vol. 38, no. 4, pp. 63–74, Oct. 2008.

[49] S. Li, Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “A scalable
framework for wireless distributed computing,” IEEE/ACM Transactions

on Networking, pp. 1–12, 2017, a shorter version is in IEEE GLOBE-
COM 2016.

https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://hadoop.apache.org/docs/r2.7.1/api/org/apache/hadoop/examples/terasort/package-summary.html
https://hadoop.apache.org/docs/r2.7.1/api/org/apache/hadoop/examples/terasort/package-summary.html
http://sortbenchmark.org/YahooHadoop.pdf
https://www.open-mpi.org/
https://www.open-mpi.org/

20

[50] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
in ACM SIGOPS operating systems review, vol. 37, no. 5, Dec. 2003,
pp. 29–43.

[51] “Apache Hadoop Distributed File System,” https://hadoop.apache.org/
docs/r1.2.1/hdfs_design.html.

[52] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the First Edition of the

MCC Workshop on Mobile Cloud Computing, ser. MCC ’12. ACM,
Aug. 2012, pp. 13–16.

[53] M. Chiang and T. Zhang, “Fog and IoT: An overview of research
opportunities,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 854–
864, Dec. 2016.

[54] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Communication-
aware computing for edge processing,” IEEE International Symposium

on Information Theory, pp. 2885–2889, 2017.
[55] ——, “Architectures for coded mobile edge computing,” to appear in

Fog World Congress, 2017.
[56] ——, “Coding for distributed fog computing,” IEEE Communications

Magazine, vol. 55, no. 4, pp. 34–40, Apr. 2017.

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

