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Abstract. In the proof-of-stake (PoS) paradigm for maintaining decen-
tralized, permissionless cryptocurrencies, Sybil attacks are prevented by
basing the distribution of roles in the protocol execution on the stake dis-
tribution recorded in the ledger itself. However, for various reasons this
distribution cannot be completely up-to-date, introducing a gap between
the present stake distribution, which determines the parties’ current in-
centives, and the one used by the protocol.
In this paper, we investigate this issue, and empirically quantify its ef-
fects. We survey existing provably secure PoS proposals to observe that
the above time gap between the two stake distributions, which we call
stake distribution lag, amounts to several days for each of these protocols.
Based on this, we investigate the ledgers of four major cryptocurrencies
(Bitcoin, Bitcoin Cash, Litecoin and Zcash) and compute the average
stake shift (the statistical distance of the two distributions) for each
value of stake distribution lag between 1 and 14 days, as well as related
statistics. We also empirically quantify the sublinear growth of stake shift
with the length of the considered lag interval.
Finally, we turn our attention to unusual stake-shift spikes in these cur-
rencies: we observe that hard forks trigger major stake shifts and that
single real-world actors, mostly exchanges, account for major stake shifts
in established cryptocurrency ecosystems.

Keywords: cryptocurrencies, blockchain, stake shift, proof of stake

1 Introduction

The introduction of Bitcoin [1] represented the first practically viable design of
a cryptocurrency capable of operating in the so-called permissionless setting,
without succumbing to the inherently threatening Sybil attacks. In the decade
following Bitcoin’s appearance, cryptocurrencies have arguably become the main
use case of the underlying blockchain technology. Most deployed cryptocurrencies
such as Bitcoin are relying on proofs of work (PoW) to prevent Sybil attacks
and provide a robust transaction ledger. However, the PoW approach, also has
its downsides, most importantly the associated energy waste (see e.g. [2]).
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A promising alternative approach to maintaining a ledger in a permissionless
environment is based on so-called proof of stake (PoS), where Sybil attacks are
prevented by, roughly speaking, attributing to each participant in the consensus
protocol a weight that is proportional to his stake as recorded in the ledger itself.
Several PoS protocols embracing this idea have been shown to achieve provable
security guarantees in various models [3,4,5,6,7,8].

More concretely, in all these PoS schemes, whenever a protocol participant
needs to be selected for a certain role in the protocol, he is chosen with a prob-
ability that is proportional to his stake share in some stake distribution SD, by
which we mean a record of ownership of all the assets maintained on the ledger
at a given time, allowing to determine what proportion of this stake is in control
by any given party. In other words, the stake distribution is a snapshot of the
ownership of the ledger-based asset at a given time (for simplicity of exposition,
we assume only a single-asset ledger in this discussion).

Ideally, the selection of a party for any security-relevant role in the protocol
at time t should be based on a stake distribution SD that is as up-to-date as pos-
sible. However, for various security-related reasons that we detail in Section 2.1,
the protocols cannot use the “current” distribution of assets SDt and are forced
to use SDt−Λ that is recorded in the ledger up to the point in time t − Λ for
some time interval Λ that we call the stake distribution lag of the protocol. How-
ever, roughly speaking, the security of the protocol is determined by—and relies
on a honest-majority assumption about—the present stake distribution SDt. To
account for this difference, existing protocols assume that not too much money
has changed hands during the past time interval of length Λ, and hence the
distributions SDt−Λ and SDt are close. Their distance, called stake shift in [4],
is the focus of our present investigation.

Our Contributions.Up until now, the notion of stake shift has only been dis-
cussed on a theoretical level and not yet quantified based on real-world data; we
set up to fill this gap. We conjecture that the stake shift statistics of a cryptocur-
rency are mostly influenced by its proliferation, market cap and daily trading
volumes, rather than its underlying consensus algorithm. Therefore, in an effort
to understand the stake shift characteristics of a mature cryptocurrency, we focus
our analysis on PoW ledgers with a strong market dominance such as Bitcoin.4

We perform a systematic, empirical study of the stake shift phenomenon. More
concretely, our contributions can be summarized as follows:

1. We adjust the formal definition of stake shift given in [4] to be applicable
to studying the execution of the protocol in retrospect, based only on the
stabilized ledger produced, without access to the states held by the parties
during its execution.

2. We provide a scalable algorithmic method for computing stabilized stake
shift over the entire history of PoW ledgers following the UTXO model. We
computed it in ledgers of four major cryptocurrencies (Bitcoin, Bitcoin Cash,
Litecoin, and Zcash) from their inception until July 31st, 2019.

4 As of September 13, 2019, about 68% of the total market capitalization of cryp-
tocurrencies is stored in Bitcoin (cf. https://coinmarketcap.com).

https://coinmarketcap.com
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3. We study the evolution of stabilized stake shift in all ledgers and found that
hard forks may trigger major stake shifts. We also fitted a simple quadratic
polynomial model that mimics the real-world sublinear growth of stake shift
with respect to the considered stake distribution lag.

4. We pick top spikes occurring within the last two years, and determine the
likely real-world identities behind them. We can observe that exchanges are
behind those spikes, at least in established cryptocurrencies such as Bitcoin
or Bitcoin Cash.

Our results show that the stake-shift phenomenon has a noticeable impact on
the provable-security guarantees provided by PoS protocols from the literature.
We argue in Section 2.1 that the stake shift over the stake distribution lag period
of a PoS protocol counts directly against the threshold of adversarial stake it
can tolerate (typically 1/2 or 1/3), and the values of stake shift that we observe
are clearly significant on this scale, as we detail in Section 6.

While our initial intention was to inform the design of PoS protocols, we
believe that our results can be interesting to a wider community and shed some
light on the real-life use of the studied cryptocurrencies as tools for value transfer.
Therefore, we make our research reproducible by releasing the implementation
of our stake shift computation method. It can be used for computing stabilized
stake shifts with configurable lag for any other cryptocurrency that follows Bit-
coin’s UTXO model.

Finally, note that all measurements were performed on UTXO-based curren-
cies and some of the mentioned PoS protocols envision an account-based ledger.
This aspect, however, is completely irrelevant to our investigation. Also, while
our motivation comes from PoS protocols, we believe that most robust and useful
data can be obtained from mature blockchains and hence we focus our measure-
ments on PoW ledgers. To reemphasize, it seems reasonable to believe that the
maturity (age, market cap, trading volume, etc.) of a blockchain are more de-
termining for its stake shift behavior than the underlying consensus mechanism,
hence justifying our choice.

We start by providing more details on the relevance of stake shift for PoS
security, and survey the stake distribution lags in existing proof-of-stake proto-
cols in Section 2. Then we provide a formal definition of stabilized stake shift in
Section 3 and describe our datasets and computation methods in Section 4. We
present our findings in Section 5 and discuss them in Section 6.

2 Background

In this section we provide a more detailed discussion of the relevance of stake
shift for PoS protocols, and survey stake distribution lags of several known PoS
proposals.
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2.1 Importance of Stake Shift for Security of PoS-Based Blockchains

As mentioned in Section 1, the selection of a party for any security-relevant role
in a PoS protocol should ideally be based on a stake distribution SD that is as
up-to-date as possible. However, this is often difficult, as we detail next.

First, in the eventual-consensus PoS protocols such as [4,5,6,7,8], there is no
consensus about the inclusion of the most recently created blocks into the stable
ledger, such a consensus is only achieved gradually by adding more and more
blocks on top of them. Consequently, during the protocol execution, the view of
the current stake distribution SDt at time t by different honest parties might
actually differ and hence SDt cannot be used for electing protocol actors.

On the other hand, in PoS protocols based on Byzantine Agreement such
as [3], where the consensus about a block is achieved before proceeding to fur-
ther blocks, the most recent stake distribution still cannot be used for sampling
protocol participants. The reason is that the security of the protocol requires
the stake distribution to be old enough so that it was fully determined before
the adversary could have any information about the bits of randomness used to
sample from this distribution (which are also produced by the protocol).

Therefore, in all these protocols, participants that are allowed to act at some
time t are sampled according to a distribution SDt−Λ recorded in the ledger up
to the point in time t − Λ for some stake distribution lag Λ. This is done with
the intention that SDt−Λ is both

– stable (in the case of eventual-consensus protocols), and
– recent enough so that it can be assumed that it does not differ too much

from the current distribution SDt.

However, the incentives of the participants are, of course, shaped by the
current distribution of the stake: For example, a party P that used to own a
significant portion of the stake, but has just transferred (e.g., sold) all of it in
time t1, has no longer any stake in the system and hence no direct motivation to
contribute to its maintenance. Nonetheless, at any time t during the time interval
(t1, t1 + Λ), the stake distribution SDt−Λ will still attribute some stake to P

and hence P will be allowed (and expected) to act accordingly in the protocol.
This discrepancy is present in all PoS protocols listed above, and in fact in all
provably-secure PoS protocols in the literature.

The security of these PoS protocols is typically argued based on the assump-
tion that at any point during the execution, less than a fraction T of the total
stake in the system is controlled by adversarial parties (for T = 1/2 in [4,5,6,7,8]
and T = 1/3 in [3]). To formally account for the above mismatch, one has to
choose between the following two approaches:

(i) Directly assume that, at every point t during the execution, less than a T -
fraction of stake in the old distribution SDt−Λ is controlled by parties that
are adversarial at time t.

(ii) Make an additional assumption that, at any point t during the execution,
some (normalized) “difference” between SDt−Λ and the current factual dis-
tribution of stake SDt in the system is bounded by a constant σ ∈ (0, 1);
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i.e., that not too much money has changed hands between t−Λ and t. This
assumption allows to conclude security as long as the current adversarial
stake ratio α ∈ [0, 1] in SDt satisfies

α ≤ (1− ε) · T − σ (1)

for some ε ≥ 0 (see e.g. [4, Theorem 6], respectively Theorem 5.3 in the full
version of [4]).

All of the provably secure PoS protocols adopt one of these two approaches.
While the assumption in approach (i) is formally sufficient, it is arguably cumber-
some and counter-intuitive, making the reasoning (ii) preferable. As evidenced
by equation (1), in the approach (ii) the quantity σ, called stake shift, plays a
significant role for the protocols’ security.

Let us clarify that our primary motivation for investigating stake shift per-
tains to the distributions SDt and SDt−Λ as described above and defined by
individual PoS protocols, and does not aim at addressing the dangers of long-
range attacks (see e.g. [9] for an overview of those). In a typical long-range attack
setting, the considered time interval would be much longer and one could hardly
expect a limited stake shift over it.

Finally, following the above motivation, below we focus on provably secure
PoS proposals. All these protocols use all existing coins for staking, not dis-
tinguishing between “staked” and “unstaked” coins, and so we don’t consider
this distinction below. It is worth mentioning that practical implementations of
these protocols, as well as other PoS blockchains such as EOS5 and Tezos6, often
deviate from this approach and allow for coins that do not participate in staking.

2.2 Stake Distribution Lag in Existing PoS Protocols

Here we survey the value of stake distribution lag in several provably secure PoS
protocol proposals.

Ouroboros.The Ouroboros PoS protocol [4] divides its execution into so-called
epochs, where each epoch is a sequence of 10k slots for a parameter k (this struc-
ture is dictated by the inner workings of the protocol). The stake distribution
used for sampling slot leaders in epoch epj is the one reflected in the current
chain up to slot 4k of the preceding epoch epj−1. Therefore, the stake distribu-
tion lag amounts to at most 14k slots.

In the deployment of the Ouroboros protocol in the Cardano project 7, each
slot takes 20 seconds and k is chosen to be 2160. Therefore, the above upper
bound on the stake distribution lag corresponds to exactly 7 days.

5 https://eos.io
6 https://tezos.com
7 https://www.cardano.org

https://eos.io
https://tezos.com
https://www.cardano.org
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Ouroboros Praos and Ouroboros Genesis. These protocols, which are
defined in [6,7], also divide their execution into epochs. However, the stake dis-
tribution used for sampling slot leaders in epoch epj is the one reflected in the
current chain up to the last slot of the epoch epj−2. Hence the stake distribution
lag amounts to at most 2 epochs. Assuming the same epoch length as above,
this would result in a stake distribution lag of exactly 10 days.

Algorand and Vault.For the protocols Algorand [3,10,11] and Vault [12] we
consider the parametrization given in [12], where the authors suggest to consider
a stake distribution lag of 1 day for Algorand and hence 2 days for Vault.

Snow White.The Snow White protocol employs a “look-back” of 2ω blocks for
a parameter ω that is sufficient to invoke the common-prefix and chain-quality
properties (see [5]). The authors do not propose a concrete value of ω, however,
given that the requirements put on ω are similar to other protocols (common
prefix, chain quality), it is safe to assume that an implementation of Snow White
would also lead to a stake distribution lag between 1 and 10 days.

3 Stabilized Stake Shift Definition

We are interested in executions of blockchain ledger protocols, and will be as-
suming a model in the spirit of [13] to formalize such executions. In particular,
we assume there is an environment orchestrating the execution, a set of parties P
executing the protocol, and an adversary A allowed to corrupt the parties upon
approval from the environment; parties yet uncorrupted are called honest. We
assume that the protocol execution is divided into a sequence of disjoint, consec-
utive time intervals called slots, indexed by natural numbers (starting with 1).
The set of honest parties at each slot sl is denoted by H[sl]. Finally, we denote
by CP[sl] the chain held by an honest party P at the beginning of slot sl.

Finally, let SDP[sl] denote the stake distribution recorded in the chain CP[sl]
up to slot sl, seen as a probability distribution (i.e., normalized to sum to 1). As a
notational convenience, let SDP[0] denote the initial stake distribution recorded
in the genesis block.

To define stake shift, we use the standard notion of statistical distance of two
discrete probability distributions.

Definition 1 (Statistical distance). For two discrete probability distributions
X and Y with support SX and SY respectively, the statistical distance (sometimes
also called the total variation distance) of X and Y is defined as

δ(X ,Y) , 1
2

∑

s∈SX∪SY

∣

∣

∣

∣

Pr
X
[s]− Pr

Y
[s]

∣

∣

∣

∣

.

Seeing stake distributions as probability distributions allows for the following
definition inspired by [4, Definition 5.1].
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Definition 2 (Stake shift). Consider an execution E of a blockchain protocol
Π for L slots, and let sl ∈ {Λ, . . . , L}. The Λ-stake shift in slot sl is the maxi-
mum, over all parties P1 honest in slot sl − Λ and all parties P2 honest in slot
sl, of the statistical distance between the stake distributions in slots sl − Λ and
sl as perceived by P1 and P2, respectively. Formally,

SSΛ(E , sl) , max
P1∈H[sl−Λ]
P2∈H[sl]

δ
(

SDP1 [sl − Λ],SDP2 [sl]
)

.

Naturally, we extend this notion over the whole execution and define the Λ-stake
shift of E to be

SSΛ(E) , max
Λ≤sl≤L

SSΛ(E , sl).

Finally, note that the quantity SSΛ(E , sl), and consequently also SSΛ(E),
cannot be determined based solely on the final stabilized ledger L that was
created by the protocol, as it does not contain the views of the participants during
the protocol execution. For this reason, any long-term empirical study that is
only based on the preserved stabilized ledger L (e.g. the Bitcoin blockchain) has
to aim for an analogous quantity capturing stake shift in L, as defined next.

For a stable ledger L, we denote by SDL[sl] the stake distribution as recorded
in L up to slot sl.

Definition 3 (Stabilized stake shift). Consider an execution E of a block-
chain protocol Π for L slots, let L denote the resulting stable ledger produced by
Π during E, and let sl ∈ {Λ, . . . , L}. The stabilized Λ-stake shift in slot sl is
defined as

ŜSΛ(E , sl) , δ
(

SDL[sl − Λ],SDL[sl]
)

,

and similarly, the stabilized Λ-stake shift of E is

ŜSΛ(E) , max
Λ≤sl≤L

ŜSΛ(E , sl).

For the reasons noted above, we will focus on stabilized stake shift in our
empirical analysis; whenever we use the term stake shift below, we refer to its
stabilized variant as per Definition 3.

4 Data and Methods

Before we can empirically investigate stake shifts in deployed cryptocurrencies,
we first need to translate the definition of stake shift into a scalable algorithmic
procedure that can compute stake shift with configurable lags over a currency’s
entire history, which in the case of Bitcoin spans more than 440M transactions
and 0.5B addresses. In this section, we describe how we prepare the required
datasets from the underlying blockchains and the technical details of our stabi-
lized stake shift computation method.
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4.1 Dataset Preparation and Structure

We consider datasets from four different cryptocurrency ledgers: first, we take
Bitcoin (BTC), which is still the cryptocurrency with the strongest market dom-
inance. Additionally, we take three alternatives derived from the Bitcoin Core
code base: Bitcoin Cash (BCH), which is a hard fork from the Bitcoin blockchain
to increase the block size limit, which took effect in August 2017; Litecoin (LTC),
which was an early altcoin, starting in October 2011, and is very similar to Bit-
coin. The key differences to Bitcoin are its choice of the proof-of-work algorithm
(scrypt) and the network’s average block creation time, which is roughly 2.5
minutes. Finally, we also consider Zcash (ZEC), which is a cryptocurrency with
enhanced privacy features, initially released in October 2016. Zcash coins are ei-
ther in a transparent or a shielded pool. The transparent (unshielded) pool con-
tains ZEC in transparent addresses (so-called t-addresses). Due to the anonymity
features in Zcash, our analysis is limited to the transparent transactions in the
unshielded pool. However, as observed in [14], a large proportion of the activity
on Zcash does not use the shielded pools. A summary of the used datasets is
provided in Table 1.

Table 1. Summary of considered cryptocurrency datasets.

Currency # Blocks Last timestamp # Txs # Addresses # Clusters # Entities

BTC 588,007 2019-07-31 23:55:05Z 440,487,974 540,942,127 50,162,316 260,182,367
BCH 593,795 2019-07-31 23:54:09Z 275,765,798 302,098,643 31,173,961 142,884,996
LTC 1,677,479 2019-07-31 23:57:21Z 36,009,400 44,256,812 3,052,978 23,304,076
ZEC 577,390 2019-07-31 23:59:54Z 5,052,970 3,488,294 206,506 1,680,481

For each cryptocurrency ledger, we partition these addresses into maximal
subsets (clusters) that are likely to be controlled by the same entity using the
well-known and efficient multiple-input clustering heuristics [15]. The underlying
intuition is that if two addresses (e.g., A1 and A2) are used as inputs in the same
transaction while one of these addresses along with another address (e.g., A2 and
A3) are used as inputs in another transaction, then the three addresses (A1, A2

and A3) must somehow be controlled by the same entity, who conducted both
transactions and therefore possesses the private keys corresponding to all three
addresses. Being aware that this heuristic fails when CoinJoin transactions [16]
are involved, we filtered those transactions before applying the multiple-input
heuristics.

Before describing our stake shift computation method in more detail, we
introduce the following notation for key entities in our dataset: we consider
a blockchain Btend

= (A,T) with its associated set of addresses A and set of
transactions T at time tend.

The multiple-input heuristics algorithm is applied to the complete transac-
tion dataset at time tend to obtain a set of clusters C = {C1, . . . , Cnc

}. Each
cluster Ci is represented by a set of addresses, where |Ci| ≥ 2, ∀i ∈ {1, . . . , nc}.



Stake Shift in Major Cryptocurrencies 9

The set of entities E is represented by the union of C with the remaining single
address clusters, i.e., E = C ∪ {{a} | a ∈ A ∧ ∀C ∈ C : a /∈ C}. The (cumulative)
balance for entity e ∈ E at time t is denoted by bte, and the total balance over
all entities at time t is given by bttotal =

∑

e∈E
bte.

The last three columns in Table 1 show the number of addresses in each
ledger, the number of computed clusters, as well as the number of entities holding
the corresponding private keys of one or more addresses.

For further inspecting the real-world identities behind entities causing major
stake shifts, we rely on Chainalysis8, which is a proprietary online tool that
facilitates the tracking of Bitcoin transactions by annotating Bitcoin addresses
with potential owners.

4.2 Stake Shift Computation

Given the dimensionality of our dataset, the challenge lies in finding a method
that follows Definition 3 and can compute the distances δ in a scalable, dis-
tributed and memory-efficient manner.

In a näıve approach one would calculate the cumulative balance for each en-
tity at every time period (e.g., days). The stake distribution is represented by
the relative frequencies, which are the result of dividing the cumulative balances
at time tp by the total balance b

tp
total. This approach would result in huge tem-

porary datasets that must be persisted in memory for subsequent computation
steps. For instance, for the computation of the stabilized stake shift in Bitcoin,
a grid of 3,862 × 260,182,367 (number of days × number of entities) data points
needs to be cached, which is computationally inefficient and hardly feasible in
practice given today’s hardware limitations.

Therefore, we propose an iterator-based approach coupled with a custom
aggregation method, which can be executed on a distributed, horizontally scal-
able data processing architecture: First, we join the transaction data with the
relevant entity information, and use the entity IDs for partitioning. Then, for
calculating the cumulative balances, we sort every partition by time period. The
iterator represents basically a loop over the grid of predefined time periods for
a given entity. Internally, we build up a data structure that holds the following
information in each iteration step: (i) entity ID e, (ii) time period tp, (iii) the

cumulative balance b
tp
e , (iv) the contribution of the current entity to the stake

distribution R
tp
e = b

tp
e /b

tp
total at time tp; and (v) the absolute difference of the

stake distribution contributions at time tp and tp−ℓ: δ
tp
e = |R

tp
e −R

tp−ℓ
e |.

To compute the stake shift for arbitrary lag values ℓ, a FIFO (first in, first
out) structure is needed to hold at most ℓ instances of the above data struc-
ture for the last ℓ periods. That data structure can efficiently be partitioned
across computation nodes and requires zero communication costs. An aggrega-

tion method then collects all partial results to obtain the stake shift value ŜS
tp

ℓ

at time period tp.

8 https://www.chainalysis.com/

https://www.chainalysis.com/
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We implemented our stake shift computation method as single Apache Spark9

job operating directly on a pre-computed dataset provisioned by the GraphSense
Cryptocurrency Analytics Platform10. For further technical details, we refer to
the source code, which will be released with this paper.

5 Analysis and Results

In the following, we first report results on the longitudinal evolution of stake
shifts in all considered cryptocurrencies (BTC, BCH, LTC, ZEC). Then we hand-
pick past stake shift spikes and analyze them in more detail, in order to gain a
better understanding on the factors causing those shifts. We also elaborate on
cross-ledger similarities and differences.

5.1 Evolution of Stabilized Stake Shifts

Figure 1 depicts the evolution of Bitcoin stake shifts over the observation period
for three different lag settings Λ: 1 day, 7 days, and 14 days. We can observe
huge spikes (0.933 for Λ = 1) right after the generation of the genesis block
and another major spike occurring on June 19th, 2011. That spike is most likely
related to a security breach on Mt. Gox, at this time one of the dominating
Bitcoin exchanges. After an attacker illegally transferred a large amount of Bit-
coins, 424,242 BTC were moved from a cold storage to a Mt. Gox address on
June 23rd 201111. We can also observe that hard forks trigger major stake shifts:
Bitcoin Cash, for instance, hard forked on August 1, 2017.

Security breach Mt. Gox Bitcoin → Bitcoin Cash

0.0

0.1

0.2

0.3

0.4

2010-01 2012-01 2014-01 2016-01 2018-01 2020-01

Date

S
ta
b
il
iz
ed

st
a
k
e
sh
if
t
Ŝ
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Fig. 1. Stake shift for BTC (stake distribution lag Λ: 1, 7, and 14 days).

Due to the lack of space, we will in the following refrain from depicting stake
evolutions for the other investigated currencies and focus on reporting key obser-
vations and findings instead. For further visual inspection, we refer the interested
reader to the Appendix of this paper. We also restrict subsequent discussions to

9 https://spark.apache.org/
10 https://graphsense.info
11 https://en.wikipedia.org/wiki/Mt. Gox

https://spark.apache.org/
https://graphsense.info
https://en.wikipedia.org/wiki/Mt._Gox
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Λ = 1 because we can observe that stake shifts evolve synchronously and differ
only in lag amplitudes.

Bitcoin Cash shows similar behavior to Bitcoin: since it is a hard fork of
Bitcoin, stake shifts run synchronous to Bitcoin until the hard fork date. Stake
shift values in Bitcoin Cash also show a higher variability after November 15,
2018. On this date a hard fork was activated by Bitcoin ABC 12 (at the time the
largest software client for Bitcoin Cash) and Bitcoin SV 13 (Satoshi’s Vision).

In general, the variability of stake shifts in Litecoin ($4.7B market capital-
ization) appears to be higher than the one in Bitcoin. The biggest spikes appear
on the following dates: 2014-02-05, 2015-03-08, and 2018-11-30. The first two
spikes are represented by a couple of dominating entities. We observed either
a direct currency flow between them, or a indirect flow via some intermediary
cluster or address. One exception is the spike on November 30th, 2018: on that
day, approximately 35.4M LTC were transferred within a 24 hour period, with
a total value of $1.1B at that time. This is extraordinary, because the Litecoin
network has recorded approximately $100M of trading volume per day, on aver-
age. After investigating involved transactions, we noted that a significant portion
of the transaction volume appears to originate from a single entity, which was
not captured by the multiple-input clustering heuristic. At least 40 new wal-
lets have entered the list of the richest Litecoin addresses, each with a balance
of 300,000 LTC (∼$10M). In total, the addresses account for 12.9M LTC (ap-
proximately $372M). The reason for the movement is still unclear, but, as we
will discuss later in Section 5.3, we can observe that the entities involved in
those stake shifts were controlled by Coinbase, which is a major cryptocurrency
exchange.
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Fig. 2. Ranked contributions (top 60) to stabilized stake shift for Λ = 1 (LTC on
November 30th, 2018).

Figure 2 provides a more detailed view on that single Litecoin spike. It shows
the top 60 contributions to the stake shift for Litecoin on November 30th, 2018.
A block of consecutive addresses sharing a certain transaction behavior becomes
visible between rank 16 to 46. They share the following common characteristics:

12 https://www.bitcoinabc.org/
13 https://bitcoinsv.io/

https://www.bitcoinabc.org/
https://bitcoinsv.io/
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(i) the number of incoming transaction is either 40 or 41; (ii) transactions are
executed in chunks of 7,500 LTC; and (iii) the total balance is 300,000 LTC.

The remaining 11 addresses of this entity appear in the tail of the distribution.
The reason is that the transactions already started on the day before (2018-11-29
21:18:59Z). Therefore, these 11 addresses do not (fully) account to the stabilized
stake shift of November 30th, 2018.

When regarding the stake shift evolution of Zcash ($366M market capi-
talization), we can, as in Litecoin, observe higher variability than in Bitcoin or
Bitcoin Cash. This could be explained by the differences in market capitalization
($5.5B BCH vs. $177B BTC) in these two currencies14.

Table 2. Summary statistics of stabilized stake shift for different lag values.

BTC BCH LTC ZEC

Lag
(in days)

Mean Median Std Dev Mean Median Std Dev Mean Median Std Dev Mean Median Std Dev

1 0.013 0.010 0.0098 0.013 0.011 0.0102 0.014 0.011 0.0123 0.014 0.012 0.0102
2 0.020 0.017 0.0129 0.020 0.017 0.0134 0.022 0.017 0.0177 0.023 0.020 0.0146
3 0.026 0.022 0.0155 0.026 0.023 0.0161 0.030 0.023 0.0219 0.031 0.027 0.0181
4 0.031 0.027 0.0177 0.032 0.027 0.0183 0.036 0.029 0.0255 0.038 0.034 0.0211
5 0.036 0.031 0.0196 0.037 0.032 0.0203 0.042 0.034 0.0289 0.045 0.040 0.0238
6 0.040 0.035 0.0213 0.041 0.036 0.0221 0.048 0.039 0.0319 0.051 0.047 0.0262
7 0.045 0.039 0.0229 0.045 0.039 0.0238 0.053 0.044 0.0347 0.058 0.053 0.0286
8 0.049 0.042 0.0244 0.050 0.043 0.0253 0.058 0.048 0.0374 0.063 0.059 0.0308
9 0.053 0.045 0.0257 0.053 0.046 0.0267 0.063 0.052 0.0399 0.069 0.065 0.0328

10 0.056 0.049 0.0270 0.057 0.050 0.0281 0.068 0.057 0.0423 0.074 0.070 0.0346
11 0.060 0.052 0.0282 0.061 0.053 0.0293 0.073 0.060 0.0446 0.079 0.075 0.0364
12 0.063 0.055 0.0294 0.064 0.056 0.0305 0.077 0.064 0.0469 0.084 0.081 0.0380
13 0.067 0.058 0.0305 0.068 0.059 0.0317 0.082 0.068 0.0490 0.089 0.085 0.0395
14 0.070 0.061 0.0316 0.071 0.062 0.0329 0.086 0.072 0.0510 0.094 0.090 0.0410

More detailed statistics for stake distribution lag Λ ranging from 1 to 14 days
are summarized in Table 2, which shows the mean, median, and standard devia-
tion of resulting stake shift values. Since the estimators for the arithmetic mean
and standard deviation are not robust against outliers, we did not consider the
initial parts of the time line and disregarded the first 6% of the total number
of days in our estimation (marked with red dash-dotted vertical line in Figure 1
and Figure 5, respectively). The gradually increasing mean and median stake
shift values confirm our previous observation of growing amplitudes.

5.2 Modeling Stake Shift

Having observed that stake shifts for different lags evolve synchronously and
vary in amplitudes, we next fitted regression models to the computed mean, me-
dian, and standard deviations (Figure 3). We can observe that estimated values
show a clear, strictly monotonic increasing trend with growing lag. More specifi-
cally, we found that quadratic polynomials capture well the relation between the
location/scale estimators and lag Λ (coefficient of determination R2 ≥ 0.99).

14 https://coinmarketcap.com/all/views/all/, retrieved on 2019-09-19.

https://coinmarketcap.com/all/views/all/


Stake Shift in Major Cryptocurrencies 13

0.000

0.025

0.050

0.075

0.100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Lag Λ (days)

m
ea
n
(Ŝ
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Fig. 3. Fitted trends for mean, median, and standard deviation of stake shift.

5.3 Attributing Selected Stake Shift Spikes

In order to shed some more light on the real-world actors behind observable
stake shift spikes, we selected the top five Λ = 1 spikes in each currency and
attributed them to real-world identities using the Chainalysis API. Due to the
limited availability of attribution tags, we focus only on the period between
August 1, 2017 and July 31, 2019. Before continuing, we note that a fully fledged
systematic analysis of real-world entities and their motivation for transferring
large amounts is out of scope in this paper.

Figure 4 shows the distribution of stake shift contributions at the spike that
occurred during the Bitcoin Cash hard fork (cf. Section 5.1). We can clearly see
that known exchanges such as Bitfinex, Kraken, Coinbase, and Korbit were the
major entities behind those stake shifts. The largest stake shift was caused by
a transfer from a Bitfinex operated address to some multisig wallet, which is
not a public deposit address but known to be operated by Bitfinex as well. This
suggest that this spike represents a major hot-to-cold wallet transfer. However,
it remains unclear why this co-occurs with the Bitcoin Cash hard-fork date.
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Fig. 4. Attributed BTC stake shift spike triggered by Bitcoin Cash fork (2017-08-01)

We also attributed the top five Bitcoin Cash and Litecoin spikes and see
that exchanges play a major role in stake shifts, however to a lesser extent
than in Bitcoin. In the selected Litecoin spike the identity of involved entities
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is unknown. However, we note that only limited attribution tags are available
for that currency. For further details on intra-spike stake shift distributions, we
refer to the plots in the Appendix of this paper (Figures 6–8).

The underlying cause and motivation for being involved in a major stake
shift is not always apparent. Possible reasons are migration of funds between
hot and/or cold wallets, or institutional investors taking a serious long position.
Summarizing the results, we can conclude that, at least in established cryptocur-
rencies such as Bitcoin, a small number of real-world entities – usually exchanges
– may account for major stake shifts in cryptocurrency ecosystems.

6 Discussion

Key Findings.Our analysis of stabilized stake shift presented in Sections 5.1
and 5.2 leads us to the following conclusions:

– The two main observable reasons for extreme stake-shift spikes are hacks and
migration of funds to different wallets. Large stake shifts resulting from hacks
are clearly problematic for a proof-of-stake based cryptocurrency, as the
entity getting control of these funds can be reasonably considered adversarial,
with unpredictable future actions.

– When considering the levels of adversarial stake ratio that a proof-of-stake
protocol can provably tolerate, one needs to be aware that this threshold
is affected by the assumed maximal stake shift σ as per Equation (1). Our
measurements, summarized in Table 2, show that depending on the proto-
col’s stake distribution lag, this effect may decrease the guaranteed resilience
bound by several percent even for lag intervals where the stake shift achieves
average values (as the most extreme example, consider the average stabilized
stake shift for a (hypothetical) two-week lag interval in ZEC, which amounts
to 9.4%). Note that, as captured in Figure 1 and the standard deviation
values in Figure 2, the stake shift value can deviate considerably from this
average. This is particularly noteworthy for protocols that only aim for the
threshold T = 1/3 in Equation (1) such as [3].

– Unsurprisingly, our data confirms that with increasing stake distribution lag
also the corresponding stake shift increases, the precise (empirical) sublinear
dependence is captured in Figure 3. This advocates for the need to make the
stake distribution lag as small as possible in any future PoS protocol design.
More importantly, knowing the exact slope of this function (and hence the
price being paid for longer stake distribution lag in terms of increased ex-
pected stake shift) allows the designers of existing and future proof-of-stake
protocols to weigh these costs against the benefits of longer lag intervals,
leading to more informed design decisions.

– Our results empirically support the natural assumption that high stake shift
mostly appears at the beginning of the lifetime of a cryptocurrency, and
hence older, more established cryptocurrencies experience lower average and
median stake shift for a given lag interval, as well as less occurrences of
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extreme stake shift spikes. This observation allows for some optimism on the
side of PoS-protocol designers, as the role of stake-shift-related weakening
of the proven security guarantees should diminish during the lifetime of the
system. On the other hand, the initial vulnerability of a new, bootstrapping
PoS cryptocurrency could be prevented for example by the “merged staking”
mechanism discussed in [17].

Additionally, our investigation of the extremal stake-shift spikes conducted
in Section 5.3 results in the following observations:

– The spikes motivated by migration of funds can be assumed to be often trig-
gered by a single entity, we conjecture that the main reason of these transfers
was moving the considerable funds to a more secure, multisig-protected wal-
let. In such cases, it is natural to assume that the funds are controlled by
the same party after the transfer, making these spikes benign from the per-
spective of our considered PoS scenario.

Limitations. The main limitation of our results with respect to the question
motivating our investigation lies in the imperfections of clustering techniques and
incompleteness of attribution tags linking entities to real-world identities (despite
using the best currently known). Having a better understanding of which keys
are controlled by the same real-world entity would give us a more precise picture
of the experienced stake shift. However, it appears likely that more realistic
clustering would lead to more keys being clustered, and hence lower stake-shift
estimates. One can thus see our results as reasonable upper bounds of these
quantities.

Future Work. One clear area of future work is to devise new and better
address-clustering and attribution data sharing techniques. On top of that, it
might be interesting to expand our investigation in time and considered cryp-
toassets. After more data is available, future studies should also include assets
or currencies built on top of PoS protocols. Such studies should also investi-
gate the role of exchanges, which typically hold major stakes and might become
important players in a PoS-based consensus. This is particularly interesting for
PoS protocols where coins must be explicitly “staked” to participate in the con-
sensus, and hence the total participating stake is typically much smaller than
the overall stake. Finally, it would be interesting to perform a more careful and
detailed investigation of the activity behind the five considered major stake shift
spikes, as well as other unusually large spikes uncovered by our work.
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(BTC), Bitcoin (BCH), Litecoin (LTC), and Zcash (ZEC). Afterwards, in Fig-
ures 6–8 we present more details on the contributions of real-world actors to the
top-five spikes in each currency within the past two years.
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14 days).
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tü
tz

et
a
l.

Bitfinex.com

Bitfinex.com

Kraken.com

Kraken.com

Coinbase.com

Poloniex.com

Coinbase.com

Coinbase.com

Coinbase.com

Coinbase.com

Coinbase.com

Coinbase.com

Korbit.co.kr

Coinfloor.co.uk

Coinfloor.co.uk

Korbit.co.kr

Bittrex.com

Bittrex.com

Huobi.com

Bitmain.com

CumberlandMining.com

Bitstamp.net

Bitfinex.com

Bitfinex.com

Kraken.com

Coinbase.com

Coinbase.com

Bittrex.com

Bitstamp.net

Poloniex.com

Coinfloor.co.uk

Coinfloor.co.uk

Poloniex.com

Bittrex.com

Bittrex.com

CoinCheck.jp

Bitflyer.jp

FreeBitco.in

FreeBitco.in

OKCoin.com

Kraken.com

Coinbase.com

Kraken.com

Bitstamp.net

Bitmain.com

Huobi.com

Bittrex.com

Coinbase.com

Bitfinex.com

Kraken.com

Solo.CKPool.org

Coinbase.com

Poloniex.com

CoinCheck.jp

CoinCheck.jp

Bittrex.com

Bittrex.com

Bitstamp.net

Xapo.com

Coinbase.com

Gemini.com

Kraken.com

Bithumb.com

CumberlandMining.com

Bitfinex.com

Bitflyer.jp

Circle.com

Poloniex.com

OKCoin.com

Kraken.com

Kraken.com

Kraken.com

Kraken.com

CumberlandMining.com

Kraken.com

Xapo.com

Bitfinex.com

Coinbase.com

Bitfinex.com

Kraken.com

Coinbase.com

Bithumb.com

Coinbase.com

Xapo.com

Xapo.com

Poloniex.com

Gemini.com

Binance.com

Bittrex.com

Kraken.com

Kraken.com

Bitstamp.net

2
0
1
7
-1
2
-0
7

2
0
1
7
-0
8
-0
8

2
0
1
7
-0
8
-0
4

2
0
1
7
-0
8
-0
2

2
0
1
7
-0
8
-0
1

0
.0
0
0

0
.0
0
2

0
.0
0
4

0
.0
0
6

0
.0
0
0

0
.0
0
2

0
.0
0
4

0
.0
0
6

0
.0
0
0
0

0
.0
0
0
5

0
.0
0
1
0

0
.0
0
1
5

0
.0
0
2
0

0
.0
0
2
5

0
.0
0
0
0

0
.0
0
0
5

0
.0
0
1
0

0
.0
0
1
5

0
.0
0
2
0

0
.0
0
0
0
0

0
.0
0
0
2
5

0
.0
0
0
5
0

0
.0
0
0
7
5

0
.0
0
1
0
0

R
a
n
k
ed

en
tities

Contribution to stabilized stake shift δ(e)

E
n
tity

u
n
k
n
o
w
n

k
n
o
w
n

F
ig
.
6
.
A
ttrib

u
ted

sp
ik
es

fo
r
B
T
C



S
ta
k
e
S
h
ift

in
M
a
jo
r
C
ry
p
to
cu

rren
cies

1
9

Binance.com

Poloniex.com

OKCoin.com

Bithumb.com

Huobi.com

Bittrex.com

Binance.com

Korbit.co.kr

Kraken.com

Coinbase.com

Poolin.com

Bitflyer.jp

Poolin.com

Binance.com

Coinbase.com

Coinbase.com

Poloniex.com

Binance.com

Kraken.com

Poolin.com

OKCoin.com

Binance.com

Bithumb.com

Coinbase.com

Coinbase.com

Coinbase.com

Kraken.com

Coinbase.com

Bithumb.com

Bithumb.com

Bithumb.com

Bithumb.com

Bithumb.com

Bithumb.com

Bithumb.com

Bithumb.com

Bithumb.com

Bithumb.com

Bithumb.com

Copernet.io

CoinEx.com

Bittrex.com

Coinbase.com

Binance.com

Kraken.com

Binance.com

OKCoin.com

Bittrex.com

Bithumb.com

Binance.com

CoinEx.com

CoinEx.com

CoinEx.com

CoinEx.com

Bitfinex.com

Bithumb.com

Huobi.com

Bitfinex.com

Binance.com

Binance.com

Poloniex.com

Poloniex.com

Kassa.cc

Binance.com

Binance.com

Binance.com

Poloniex.com

Binance.com

Kraken.com

Binance.com

Binance.com

OKCoin.com

Binance.com

Poolin.com

Binance.com

Binance.com

Binance.com

Binance.com

Bittrex.com

Poolin.com

Binance.com

BitBankWallet.jp

2
0
1
8
-1
2
-2
1

2
0
1
8
-1
2
-0
7

2
0
1
8
-1
2
-0
4

2
0
1
8
-1
1
-3
0

2
0
1
8
-1
1
-1
4

0
.0
0
0

0
.0
0
5

0
.0
1
0

0
.0
1
5

0
.0
0

0
.0
1

0
.0
2

0
.0
0
0

0
.0
0
5

0
.0
1
0

0
.0
0
0

0
.0
0
5

0
.0
1
0

0
.0
0
0

0
.0
0
5

0
.0
1
0

0
.0
1
5

R
a
n
k
ed

en
tities

Contribution to stabilized stake shift δ(e)

E
n
tity

u
n
k
n
o
w
n

k
n
o
w
n

F
ig
.
7
.
A
ttrib

u
ted

sp
ik
es

fo
r
B
C
H



2
0

R
.
S
tü
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